In this paper,a multi-objective sustainable biomass supply chain network under uncertainty is designed by neutrosophic programming method.In this method,for each objective function of the problem,three functions of tr...In this paper,a multi-objective sustainable biomass supply chain network under uncertainty is designed by neutrosophic programming method.In this method,for each objective function of the problem,three functions of truth membership,non-determination and falsehood are considered.Neutrosophic programming method in this paper simultaneously seeks to optimize the total costs of the supply chain network,the amount of greenhouse gas emissions,the number of potential people hired and the time of product transfer along the supply chain network.To achieve the stated objective functions,strategic decisions such as locating potential facilities and tactical decisions such as optimal product flow allocation and vehicle routing must be made.The results of the implementation of neutrosophic programming method show the high efficiency of this method in achieving the optimal values of each objective function.Also,by examining the rate of uncertainty,it was observed that with increasing this rate,the total costs of supply chain network design,greenhouse gas emissions and product transfer times have increased,and in contrast,the potential employment rate of individuals has decreased.展开更多
The systematic analysis of the hierarchical relationship among the factors affecting the sustainable supply chain implementation of water diversion projects has theoretical value and practical significance for the sus...The systematic analysis of the hierarchical relationship among the factors affecting the sustainable supply chain implementation of water diversion projects has theoretical value and practical significance for the sustainable development of large-scale water diversion projects. Through the investigation of relevant literature, books, web pages, materials, and discussions with relevant experts and scholars, a total of 23 factors influencing the sustainable supply chain implementation of water diversion projects were identified. Then using ISM (Interpretative Structural Modeling Method) to analyze the causality of each factor, a multi-level hierarchical structure model was obtained. The results showed that: 1) The surface-level influencing factors of the sustaina<span>ble supply chain implementation of the water diversion project mainly i</span>ncluded 8 factors such as water-saving awareness and water-saving intensity in the diversion area, water quality, water pollution and other disasters, effective incentive mechanisms, etc., and surface-level influencing factors were directly related to the sustainable supply chain implementation of water diversio<span>n projects. 2) The indirect influencing factors of the sustainable supply chai</span>n of water diversion projects included 12 factors such as the water quality and quantity guarantee rate of the supply chain, the government’s enforcement of laws and regulations, water distribution, ecological compensation, and compensatio<span>n mechanisms for residents in the water source area. Indirect influencing</span> factor scan acts directly on the direct influencing factors, and int<span>ervening in the factors that can be controlled by humans is one of the important ways to improve the sustainable operation of water diversion proj</span><span>e</span><span>cts. 3) T</span><span>he fundamental influencing factors for the sustainable supply chain implementation of water diversion projects included three f</span>actors: Resettlement policy, government financial support, and sound laws and regulations. Deep influencing factors had multi-channel influence and controllability, and intervening in them was the main means to improve the sustainable operation of water diversion projects.展开更多
This paper explores reclaimed and recycled material used in ecovillages. The models discussed in this paper include BedZED in the United Kingdom and Masdar City in the Middle East. These two communities contain featur...This paper explores reclaimed and recycled material used in ecovillages. The models discussed in this paper include BedZED in the United Kingdom and Masdar City in the Middle East. These two communities contain features characterized by the sustainable principles of the ecovillage concept by using non-traditional building materials. The creations of more ecovillages, along with the growth of current ecovillages, play an important role in positively solvening environmental and social problems. The sustainable materials used in the ecovillages also act as a model for communities wishing to implement sustainable development.展开更多
The COVID-19 outbreak has caused uncertainty risk surges,increased sustainable supply chain vulnerabilities,and challenges to sustainable supply chain resilience(SSCR)management.Therefore,improving SSCR is necessary t...The COVID-19 outbreak has caused uncertainty risk surges,increased sustainable supply chain vulnerabilities,and challenges to sustainable supply chain resilience(SSCR)management.Therefore,improving SSCR is necessary to alleviate vulnerabilities,and SSCR management must generate large capital investments.However,the economic downturn brought about by the COVID-19 epidemic has made some companies have limited budgets that can be used to improve SSCR.Therefore,the design of resilience solutions needs to fully consider the constraints of budgetary costs.Most of the existing related literature only discusses optimal resilience solutions under certain cost constraints,so such resilience solutions cannot be applied to most enterprises.In this study,we set the cost constraint as a variable quantity,using resilience efficiency and customer satisfaction as indicators,to determine the changing laws of optimal resilience strategies when cost constraints change.These rules can be applied to enterprises with different budgeted costs.Our findings suggest that companies should prioritize sacrificing resilience measures(RMs)related to adaptive capacity when budget costs gradually decline,and RMs related to absorptive capacity are indispensable at all budget levels.Furthermore,the pursuit of environmental and social sustainability cannot be abandoned,no matter how limited the flexible budget may be.展开更多
Many firms have already been actively or passively involved in sustainable supply chain management with the objective of improving the triple bottom line(TBL).But whether the limited funds should be allocated to both ...Many firms have already been actively or passively involved in sustainable supply chain management with the objective of improving the triple bottom line(TBL).But whether the limited funds should be allocated to both community responsibility activities(e.g.,corporate philanthropy)and environmental protection activities(e.g.,recycling)is a confusing question.This paper provides deep insights into the combination strategy of two corporate social responsibility(CSR)types in a two-tier sustainable supply chain by modeling analysis.The decision models in eight scenarios with different combinations of CSR types are proposed and applied for the determination of equilibrium scenarios.The paper’s findings highlight:under certain conditions,(1)the supply chain with two types of CSR is the equilibrium scenario and improves the TBL;(2)counter-intuitively,balancing short-and long-term benefits,firms are more willing to cooperate with partners with relatively low consumers sensitivity of CSR activities;(3)it is wise for the manufacturer to allocate more funding to environmental responsibility than to community responsibility.In addition,considering both short-and long-term benefits,comparing with the manufacturer,the retailer has a stronger incentive to improve recycling efficiency.展开更多
The supply chain of many industries,including Oil and Gas,was significantly affected by the disruption caused by the Covid pandemic.This,in turn,had a knock-on effect on other industries around the globe.Sustaining th...The supply chain of many industries,including Oil and Gas,was significantly affected by the disruption caused by the Covid pandemic.This,in turn,had a knock-on effect on other industries around the globe.Sustaining the impact of the disruption posed a major challenge for the industry.This study contributes to the existing literature by identifying and analyzing the most significant drivers that affected the sustainability of the Oil and Gas supply chain during the Covid pandemic.Fifteen drivers were identified based on an extensive literature review and a survey conducted with experts working in the Oil and Gas industry.Multi-criteria decision-making methodologies were used to analyze these drivers.The analysis from the fuzzy analytical hierarchy process found that the most important drivers for the sustainability of the Oil and gas supply chain during the pandemic were"Risk management capacity","Government regulation"and"Health and safety of employees".On the other hand,the driver"Community Pressure"was found to be of the least importance.Furthermore,the study integrated the results of the fuzzy analytical hierarchy process with the fuzzy technique for order of preference by similarity to ideal solution to calculate the supply chain sustainability index.A case example was demonstrated to rank the industries based on such calculations.This study can support the governmental institutions in benchmarking the Oil and Gas industry based on its sustainability index.Additionally,the outcomes of the study will help industrial decision makers prioritize the drivers the company should focus and devise strategies based on the priority to improve the sustainability of their supply chain during severe disruption.This will be crucial as the World health organization has cautioned that the world may encounter another pandemic in the near future.展开更多
This paper develops twin models towards integrated production inventory planning for manufacturer–retailer ecosystem in a sustainable supply chain setup.Decision-making models are developed in fuzzy environment and u...This paper develops twin models towards integrated production inventory planning for manufacturer–retailer ecosystem in a sustainable supply chain setup.Decision-making models are developed in fuzzy environment and under purview of carbon taxation system.Novel conception of Fermatean fuzzy numbers is introduced for handling parameters imprecision.The first model addresses planning problem without considering green investments,whereas the second one additionally identifies optimal green investments for each player of ecosystem.Models are formulated as nonlinear optimization problems with objective of maximizing profit.Comparison of results from both models enables decision-makers to figure out the profitability of green investment option.Numerical instance with data from the existing literature is solved using Mathematica 12.1.Computational results for studied case report profitability of green investments for supply chain partners and significant reduction in carbon emissions as well.Variation analysis demonstrates stability of the proposed model.Developed models equip small-scale retailer-manufacture tie-ups prevalent in developing economies for discussed decisions.展开更多
文摘In this paper,a multi-objective sustainable biomass supply chain network under uncertainty is designed by neutrosophic programming method.In this method,for each objective function of the problem,three functions of truth membership,non-determination and falsehood are considered.Neutrosophic programming method in this paper simultaneously seeks to optimize the total costs of the supply chain network,the amount of greenhouse gas emissions,the number of potential people hired and the time of product transfer along the supply chain network.To achieve the stated objective functions,strategic decisions such as locating potential facilities and tactical decisions such as optimal product flow allocation and vehicle routing must be made.The results of the implementation of neutrosophic programming method show the high efficiency of this method in achieving the optimal values of each objective function.Also,by examining the rate of uncertainty,it was observed that with increasing this rate,the total costs of supply chain network design,greenhouse gas emissions and product transfer times have increased,and in contrast,the potential employment rate of individuals has decreased.
文摘The systematic analysis of the hierarchical relationship among the factors affecting the sustainable supply chain implementation of water diversion projects has theoretical value and practical significance for the sustainable development of large-scale water diversion projects. Through the investigation of relevant literature, books, web pages, materials, and discussions with relevant experts and scholars, a total of 23 factors influencing the sustainable supply chain implementation of water diversion projects were identified. Then using ISM (Interpretative Structural Modeling Method) to analyze the causality of each factor, a multi-level hierarchical structure model was obtained. The results showed that: 1) The surface-level influencing factors of the sustaina<span>ble supply chain implementation of the water diversion project mainly i</span>ncluded 8 factors such as water-saving awareness and water-saving intensity in the diversion area, water quality, water pollution and other disasters, effective incentive mechanisms, etc., and surface-level influencing factors were directly related to the sustainable supply chain implementation of water diversio<span>n projects. 2) The indirect influencing factors of the sustainable supply chai</span>n of water diversion projects included 12 factors such as the water quality and quantity guarantee rate of the supply chain, the government’s enforcement of laws and regulations, water distribution, ecological compensation, and compensatio<span>n mechanisms for residents in the water source area. Indirect influencing</span> factor scan acts directly on the direct influencing factors, and int<span>ervening in the factors that can be controlled by humans is one of the important ways to improve the sustainable operation of water diversion proj</span><span>e</span><span>cts. 3) T</span><span>he fundamental influencing factors for the sustainable supply chain implementation of water diversion projects included three f</span>actors: Resettlement policy, government financial support, and sound laws and regulations. Deep influencing factors had multi-channel influence and controllability, and intervening in them was the main means to improve the sustainable operation of water diversion projects.
文摘This paper explores reclaimed and recycled material used in ecovillages. The models discussed in this paper include BedZED in the United Kingdom and Masdar City in the Middle East. These two communities contain features characterized by the sustainable principles of the ecovillage concept by using non-traditional building materials. The creations of more ecovillages, along with the growth of current ecovillages, play an important role in positively solvening environmental and social problems. The sustainable materials used in the ecovillages also act as a model for communities wishing to implement sustainable development.
基金was supported by the Social Science Fund of Liaoning Province(Grant No.L21CGL004).
文摘The COVID-19 outbreak has caused uncertainty risk surges,increased sustainable supply chain vulnerabilities,and challenges to sustainable supply chain resilience(SSCR)management.Therefore,improving SSCR is necessary to alleviate vulnerabilities,and SSCR management must generate large capital investments.However,the economic downturn brought about by the COVID-19 epidemic has made some companies have limited budgets that can be used to improve SSCR.Therefore,the design of resilience solutions needs to fully consider the constraints of budgetary costs.Most of the existing related literature only discusses optimal resilience solutions under certain cost constraints,so such resilience solutions cannot be applied to most enterprises.In this study,we set the cost constraint as a variable quantity,using resilience efficiency and customer satisfaction as indicators,to determine the changing laws of optimal resilience strategies when cost constraints change.These rules can be applied to enterprises with different budgeted costs.Our findings suggest that companies should prioritize sacrificing resilience measures(RMs)related to adaptive capacity when budget costs gradually decline,and RMs related to absorptive capacity are indispensable at all budget levels.Furthermore,the pursuit of environmental and social sustainability cannot be abandoned,no matter how limited the flexible budget may be.
基金This work has been supported by the National Natural Science Foundation of China(NSFC),under grants Nos.72132007 and 72261147707。
文摘Many firms have already been actively or passively involved in sustainable supply chain management with the objective of improving the triple bottom line(TBL).But whether the limited funds should be allocated to both community responsibility activities(e.g.,corporate philanthropy)and environmental protection activities(e.g.,recycling)is a confusing question.This paper provides deep insights into the combination strategy of two corporate social responsibility(CSR)types in a two-tier sustainable supply chain by modeling analysis.The decision models in eight scenarios with different combinations of CSR types are proposed and applied for the determination of equilibrium scenarios.The paper’s findings highlight:under certain conditions,(1)the supply chain with two types of CSR is the equilibrium scenario and improves the TBL;(2)counter-intuitively,balancing short-and long-term benefits,firms are more willing to cooperate with partners with relatively low consumers sensitivity of CSR activities;(3)it is wise for the manufacturer to allocate more funding to environmental responsibility than to community responsibility.In addition,considering both short-and long-term benefits,comparing with the manufacturer,the retailer has a stronger incentive to improve recycling efficiency.
文摘The supply chain of many industries,including Oil and Gas,was significantly affected by the disruption caused by the Covid pandemic.This,in turn,had a knock-on effect on other industries around the globe.Sustaining the impact of the disruption posed a major challenge for the industry.This study contributes to the existing literature by identifying and analyzing the most significant drivers that affected the sustainability of the Oil and Gas supply chain during the Covid pandemic.Fifteen drivers were identified based on an extensive literature review and a survey conducted with experts working in the Oil and Gas industry.Multi-criteria decision-making methodologies were used to analyze these drivers.The analysis from the fuzzy analytical hierarchy process found that the most important drivers for the sustainability of the Oil and gas supply chain during the pandemic were"Risk management capacity","Government regulation"and"Health and safety of employees".On the other hand,the driver"Community Pressure"was found to be of the least importance.Furthermore,the study integrated the results of the fuzzy analytical hierarchy process with the fuzzy technique for order of preference by similarity to ideal solution to calculate the supply chain sustainability index.A case example was demonstrated to rank the industries based on such calculations.This study can support the governmental institutions in benchmarking the Oil and Gas industry based on its sustainability index.Additionally,the outcomes of the study will help industrial decision makers prioritize the drivers the company should focus and devise strategies based on the priority to improve the sustainability of their supply chain during severe disruption.This will be crucial as the World health organization has cautioned that the world may encounter another pandemic in the near future.
文摘This paper develops twin models towards integrated production inventory planning for manufacturer–retailer ecosystem in a sustainable supply chain setup.Decision-making models are developed in fuzzy environment and under purview of carbon taxation system.Novel conception of Fermatean fuzzy numbers is introduced for handling parameters imprecision.The first model addresses planning problem without considering green investments,whereas the second one additionally identifies optimal green investments for each player of ecosystem.Models are formulated as nonlinear optimization problems with objective of maximizing profit.Comparison of results from both models enables decision-makers to figure out the profitability of green investment option.Numerical instance with data from the existing literature is solved using Mathematica 12.1.Computational results for studied case report profitability of green investments for supply chain partners and significant reduction in carbon emissions as well.Variation analysis demonstrates stability of the proposed model.Developed models equip small-scale retailer-manufacture tie-ups prevalent in developing economies for discussed decisions.