Sustainable agriculture plays a crucial role in meeting the growing global demand for food while minimizing adverse environmental impacts from the overuse of synthetic pesticides and conventional fertilizers.In this c...Sustainable agriculture plays a crucial role in meeting the growing global demand for food while minimizing adverse environmental impacts from the overuse of synthetic pesticides and conventional fertilizers.In this context,renewable biopolymers being more sustainable offer a viable solution to improve agricultural sustainability and production.Nano/micro-structural supramolecular biopolymers are among these innovative biopolymers that are much sought after for their unique features.These biomaterials have complex hierarchical structures,great stability,adjustable mechanical strength,stimuli-responsiveness,and self-healing attributes.Functional molecules may be added to their flexible structure,for enabling novel agricultural uses.This overview scrutinizes how nano/micro-structural supramolecular biopolymers may radically alter farming practices and solve lingering problems in agricultural sector namely improve agricultural production,soil health,and resource efficiency.Controlled bioactive ingredient released from biopolymers allows the tailored administration of agrochemicals,bioactive agents,and biostimulators as they enhance nutrient absorption,moisture retention,and root growth.Nano/micro-structural supramolecular biopolymers may protect crops by appending antimicrobials and biosensing entities while their eco-friendliness supports sustainable agriculture.Despite their potential,further studies are warranted to understand and optimize their usage in agricultural domain.This effort seeks to bridge the knowledge gap by investigating their applications,challenges,and future prospects in the agricultural sector.Through experimental investigations and theoretical modeling,this overview aims to provide valuable insights into the practical implementation and optimization of supramolecular biopolymers in sustainable agriculture,ultimately contributing to the development of innovative and eco-friendly solutions to enhance agricultural productivity while minimizing environmental impact.展开更多
The mining sector historically drove the global economy but at the expense of severe environmental and health repercussions,posing sustainability challenges[1]-[3].Recent advancements on artificial intelligence(AI)are...The mining sector historically drove the global economy but at the expense of severe environmental and health repercussions,posing sustainability challenges[1]-[3].Recent advancements on artificial intelligence(AI)are revolutionizing mining through robotic and data-driven innovations[4]-[7].While AI offers mining industry advantages,it is crucial to acknowledge the potential risks associated with its widespread use.Over-reliance on AI may lead to a loss of human control over mining operations in the future,resulting in unpredictable consequences.展开更多
This study evaluates the impact of the Pani Panchayat initiative, a community-based water management program, in the Angul and Dhenkanal districts of Odisha. Utilizing a mixed-methods approach, we gathered qualitative...This study evaluates the impact of the Pani Panchayat initiative, a community-based water management program, in the Angul and Dhenkanal districts of Odisha. Utilizing a mixed-methods approach, we gathered qualitative and quantitative data through structured interviews with diverse stakeholders, focus group discussions, and surveys. The findings indicate that the Angul district exhibited higher levels of fair elections and improved water access due to better canal maintenance, while the Dhenkanal district faced challenges from industrial water usage. The study also examines the potential of technological advancements, such as real-time water monitoring, to enhance governance. By identifying synergies and gaps with existing water policies, the research provides policy recommendations to promote sustainable water management in alignment with the Sustainable Development Goals 2030.展开更多
Given the rapid development of China’s new urbanization,cities with different locations and varying functional positioning,resource endowments,and development stages have insufficient scientific and applicable techni...Given the rapid development of China’s new urbanization,cities with different locations and varying functional positioning,resource endowments,and development stages have insufficient scientific and applicable technical tools for implementing the United Nations Sustainable Development Goals(SDGs).City managers and policymakers must urgently establish SDG benchmarks to diagnose city development.Moreover,successful experiences from similar cities regarding sustainable development and self-improvement must be learned from to promote diversified,sustainable development across the country.Furthermore,emerging technologies such as artificial intelligence,the Internet of Things,big data and 5G are widely used in smart cities.Therefore,there is a growing need for“knowledge-based,personalized and intelligent”technologies to support monitoring,evaluation,and decision-making processes facilitating sustainable development in cities.This paper uses standardization as the theoretical support and technical basis.This approach can help clarify the sustainable development processes in China and clarify the evaluation results of and provide data on horizontal city comparisons,which can be used to develop evaluation technology for sustainable development in cities and construct a standardized system.The results provide a standard framework for intelligent assessment and decision-making regarding cities’sustainable development capabilities in China.Evaluating major international standardization institutions reveals that the practices of Chinese national standards should be fully absorbed and integrated to guide the evaluation of smart,resilient,and low-carbon cities.To this end,an indicator library of city sustainable development is proposed to provide standard evaluation technology methods.Finally,analyzing the response relationship of the indicator library to SDGs reveals the need for a standardized knowledge map of sustainable development assessment techniques and methods from the perspective of integrated management for sustainable development in cities.展开更多
The demand for lithium-ion batteries(LIBs)is driven largely by their use in electric vehicles,which is projected to increase dramatically in the future.This great success,however,urgently calls for the efficient recyc...The demand for lithium-ion batteries(LIBs)is driven largely by their use in electric vehicles,which is projected to increase dramatically in the future.This great success,however,urgently calls for the efficient recycling of LIBs at the end of their life.Herein,we describe a froth flotation-based process to recycle graphite—the predominant active material for the negative electrode—from spent LIBs and investigate its reuse in newly assembled LIBs.It has been found that the structure and morphology of the recycled graphite are essentially unchanged compared to pristine commercial anode-grade graphite,and despite some minor impurities from the recycling process,the recycled graphite provides a remarkable reversible specific capacity of more than 350 mAh g^(−1).Even more importantly,newly assembled graphite‖NMC532 cells show excellent cycling stability with a capacity retention of 80%after 1000 cycles,that is,comparable to the performance of reference full cells comprising pristine commercial graphite.展开更多
The ramifications of global climate change and resource scarcities have made it imperative to re-examine the definition of sustainable energy-storage systems.It is crucial to recognize that not all renewable resources...The ramifications of global climate change and resource scarcities have made it imperative to re-examine the definition of sustainable energy-storage systems.It is crucial to recognize that not all renewable resources are inherently sustainable,and their full impact on the environment must be assessed.With the proliferation of invasive jellyfish species wreaking havoc on marine ecosystems and economies worldwide,utilizing overabundant jellyfish as a carbon source presents an opportunity to create energy-storage systems that are both financially beneficial and environmentally remediating.Accordingly,a comprehensive approach to sustainability also requires eco-friendly solutions throughout the entire lifecycle,from material sourcing to battery production,without compromising highperformance requirements.Currently,most electrode syntheses for lithium-ion batteries(LIBs) employed are energy-intensive,multiple-steps,complex,and additive-heavy.In response,this work pioneers the straightforward use of low-energy laser irradiation of a jellyfish biomass/silicon nanoparticle blend to encapsulate the silicon nanoparticles in-situ within the as-forming conductive carbonized matrix,creating sustainable and additive-free composite anodes.The self-standing anode is directly synthesized under ambient conditions and requires no post-processing.Here,a laser-synthesized conductive threedimensional porous carbon/silicon composite anode from raw jellyfish biomass for LIBs is presented,displaying outstanding cyclic stability(>1000 cycles),excellent capacity retention(>50% retention after1000 cycles),exceptional coulombic efficiency(>99%),superb reversible gravimetric capacity(>2000 mAh/g),and high rate performance capability(>1.6 A/g),paving a new path to future sustainable energy production.展开更多
The Sustainable Development Goals(SDGs)are significantly off-course as we reach the midpoint of their 2030 deadline.From a scientific perspective,the critical challenge in achieving the SDGs lies in the need for more ...The Sustainable Development Goals(SDGs)are significantly off-course as we reach the midpoint of their 2030 deadline.From a scientific perspective,the critical challenge in achieving the SDGs lies in the need for more scientific principles to understand the complex socio-ecological systems(SES)and their interactions influencing the 17 SDGs.Here,we propose a scientific framework to clarify the common scientific principles and the rational treatment of diversity under these principles.The framework’s core is revealing the complex mechanisms underlying the achievement of each Sustainable Development Goal(SDG)and SDG interactions.Building upon the identified mechanisms,complex SES models can be established,and the implementation of SDGs can be formulated as a multi-objective optimization problem,seeking a compromise in competition between essential costs and desired benefits.Our framework can assist countries,and even the world in accelerating progress towards the SDGs.展开更多
In China,the Innovation Demonstration Zone for the National Sustainable Development Agenda is a key initiative for executing the United Nations(UN)2030 Agenda for Sustainable Development.The Zone also plays critical r...In China,the Innovation Demonstration Zone for the National Sustainable Development Agenda is a key initiative for executing the United Nations(UN)2030 Agenda for Sustainable Development.The Zone also plays critical roles in addressing the developmental bottlenecks that China faces and sharing Chinese insights into global sustainable development efforts.On July 15,2022,the State Council endorsed the Zone’s establishment in Zaozhuang City,Shandong Province,where it focuses on innovation-led sustainable development in rural areas.Research into the levels,impediments,interdependencies,and evolutionary trends of rural sustainable development is crucial.Therefore,this research aimed to assist in comprehensively assessing developmental challenges and facilitating the harmonious advancement of social,economic,and environmental aspects in rural areas.In pursuit of the three fundamental dimensions of the UN’s Sustainable Development Goals(SDGs),namely development’s drivers,quality,and equity,this study was grounded in China’s national Rural Revitalization Strategy and the demands of sustainable development strategies.It also aligns with the UN 2030 Agenda for Sustainable Development and the associated SDG indicators.Focusing on four key areas,namely production elements,natural elements,social elements,and rural governance,this study developed an evaluation index system for assessing the level of rural sustainable development.It employed a range of analytical models,including the game theory-based combination empowerment method,barrier degree model,coupling degree model,coupling coordination degree model,and gray prediction GM(1,1)model,to analyze the status and evolving trends of rural sustainable development in Zaozhuang City from 2015 to 2022.The key findings were as follows:①Relative to the baseline year 2015,the sustainable development level in Zaozhuang’s rural areas has shifted toward an improved state overall.②The primary barrier to achieving rural sustainable development in Zaozhuang is the city’s rural governance system.③While the components of rural sustainable development in Zaozhuang are in the early stages of both basic and moderate coordination,an overall enhancement has occurred in their integrative coordination.④Between 2023 and 2025,the level of integrative coordination in Zaozhuang is expected to rise steadily.However,reaching a state of advanced coordination will require additional time for development.展开更多
Current globalization trends and important breakthroughs globally need a complete study of heavy metal contamination, its causes, its impacts on human and environmental health, and different remediation strategies. He...Current globalization trends and important breakthroughs globally need a complete study of heavy metal contamination, its causes, its impacts on human and environmental health, and different remediation strategies. Heavy metal pollution is mostly produced by urbanization and industry, which threatens ecosystems and human health. Herein, we discuss a sustainable environmental restoration strategy employing phytoremediation for heavy metal pollution, the carcinogenic, mutagenic, and cytotoxic effects of heavy metals such as cadmium, copper, mercury, selenium, zinc, arsenic, chromium, lead, nickel, and silver, which may be fatal. Phytoremediation, which was prioritized, uses plants to remove, accumulate, and depollute pollutants. This eco-friendly method may safely collect, accumulate, and detoxify toxins using plants, making it popular. This study covers phytostabilization, phytodegradation, rhizodegradation, phytoextraction, phytovolatilization, and rhizofiltration. A phytoremediation process’s efficiency in varied environmental circumstances depends on these components’ complex interplay. This paper also introduces developing phytoremediation approaches including microbe-assisted, chemical-assisted, and organic or bio-char use. These advancements attempt to overcome conventional phytoremediation’s limitations, such as limited suitable plant species, location problems, and sluggish remediation. Current research includes machine learning techniques and computer modeling, biostimulation, genetic engineering, bioaugmentation, and hybrid remediation. These front-line solutions show that phytoremediation research is developing towards transdisciplinary efficiency enhancement. We acknowledge phytoremediation’s promise but also its drawbacks, such as site-specific variables, biomass buildup, and sluggish remediation, as well as ongoing research to address them. In conclusion, heavy metal pollution threatens the ecology and public health and must be reduced. Phytoremediation treats heavy metal pollution in different ways. Over time, phytoremediation systems have developed unique ways that improve efficiency. Despite difficulties like site-specificity, sluggish remediation, and biomass buildup potential, phytoremediation is still a vital tool for environmental sustainability.展开更多
In response to the rapid increase in world population and subsequent demands for food,edible insects represent an alternative food source for humans that is rich in proteins,amino acids and minerals.Entomophagy is a t...In response to the rapid increase in world population and subsequent demands for food,edible insects represent an alternative food source for humans that is rich in proteins,amino acids and minerals.Entomophagy is a tradition in many countries including China and Thailand,and edible insects have attracted a lot of attention in Western World due to their suitable nutrient composition,high mineral content(e.g.,Fe,Zn,Ca,Mg)and potential use as a supplement in human diet.In this study,we surveyed mineral content in seven insect orders and 67 species of mass produced and wild-harvested edible insects.The total content of essential elements in edible insects was very high in Tenebrio molitor,Bombyx mori,and Zonocerus variegatus.The heavy metal content(summarized for eight species)was below the maximum limit allowed for safe consumption.Sustainable supply of minerals derived from insect biomass is complicated due to the high variations of mineral content in insects and the potential of its change due to processing.展开更多
Finding sustainable energy resources is essential to face the increasing energy demand.Trees are an important part of ancient architecture but are becoming rare in urban areas.Trees can control and tune the pedestrian...Finding sustainable energy resources is essential to face the increasing energy demand.Trees are an important part of ancient architecture but are becoming rare in urban areas.Trees can control and tune the pedestrian-level wind velocity and thermal condition.In this study,a numerical investigation is employed to assess the role of trees planted in the windward direction of the building complex on the thermal and pedestrian wind velocity conditions around/inside a pre-education building located in the center of the complex.Compared to the previous studies(which considered only outside buildings),this work considers the effects of trees on microclimate change both inside/outside buildings.Effects of different parameters including the leaf area density and number of trees,number of rows,far-field velocity magnitude,and thermal condition around the main building are assessed.The results show that the flow velocity in the spacing between the first-row buildings is reduced by 30%-40% when the one-row trees with 2 m height are planted 15 m farther than the buildings.Furthermore,two rows of trees are more effective in higher velocities and reduce the maximum velocity by about 50%.The investigation shows that trees also could reduce the temperature by about 1℃around the building.展开更多
Grinding,a critical precision machining process for difficult-to-cut alloys,has undergone continual technological advancements to improve machining efficiency.However,the sustainability of this process is gaining heig...Grinding,a critical precision machining process for difficult-to-cut alloys,has undergone continual technological advancements to improve machining efficiency.However,the sustainability of this process is gaining heightened attention due to significant challenges associated with the substantial specific grinding energy and the extensive heat generated when working with difficult-to-cut alloys,renowned for their exceptional physical and mechanical properties.In response to these challenges,the widespread application of massive coolant in manufacturing industries to dissipate grinding heat has led to complex post-cleaning and disposal processes.This,in turn,has resulted in issues such as large energy consumption,a considerable carbon footprint,and concerns related to worker health and safety,which have become the main factors that restrict the development of grinding technology.This paper provides a holistic review of sustainability in grinding difficult-to-cut alloys,encompassing current trends and future directions.The examination extends to developing grinding technologies explicitly tailored for these alloys,comprehensively evaluating their sustainability performance.Additionally,the exploration delves into innovative sustainable technologies,such as heat pipe/oscillating heat pipe grinding wheels,minimum quantity lubrication,cryogenic cooling,and others.These groundbreaking technologies aim to reduce dependence on hazardous coolants,minimizing energy and resource consumption and carbon emissions associated with coolant-related or subsequent disposal processes.The essence of these technologies lies in their potential to revolutionize traditional grinding practices,presenting environmentally friendly alternatives.Finally,future development trends and research directions are put forward to pursue the current limitation of sustainable grinding for difficult-to-cut alloys.This paper can guide future research and development efforts toward more environmentally friendly grinding operations by understanding the current state of sustainable grinding and identifying emerging trends.展开更多
This issue covers the papers on two special themes:(1)Mineral resources from deep sea—Science and Engineering and(2)Planning and development of underground space and infrastructure for sustainable and liveable cities.
Microfibers from natural products are endowed with remarkable biocompatibility,biodegradability,sustainable utilization as well as environmental protection char-acteristics etc.Benefitting from these advantages,microfibe...Microfibers from natural products are endowed with remarkable biocompatibility,biodegradability,sustainable utilization as well as environmental protection char-acteristics etc.Benefitting from these advantages,microfibers have demonstrated their prominent values in biomedical applications.This review comprehensively summarizes the relevant research progress of sustainable microfibers from natural products and their biomedical applications.To begin,common natural elements are introduced for the microfiber fabrication.After that,the focus is on the specific fabri-cation technology and process.Subsequently,biomedical applications of sustainable microfibers are discussed in detail.Last but not least,the main challenges during the development process are summarized,followed by a vision for future development opportunities.展开更多
Rice has a huge impact on socio-economic growth,and ensuring its sustainability and optimal utilization is vital.This review provides an insight into the role of smart farming in enhancing rice productivity.The applic...Rice has a huge impact on socio-economic growth,and ensuring its sustainability and optimal utilization is vital.This review provides an insight into the role of smart farming in enhancing rice productivity.The applications of smart farming in rice production including yield estimation,smart irrigation systems,monitoring disease and growth,and predicting rice quality and classifications are highlighted.The challenges of smart farming in sustainable rice production to enhance the understanding of researchers,policymakers,and stakeholders are discussed.Numerous efforts have been exerted to combat the issues in rice production in order to promote rice sector development.The effective implementation of smart farming in rice production has been facilitated by various technical advancements,particularly the integration of the Internet of Things and artificial intelligence.The future prospects of smart farming in transforming existing rice production practices are also elucidated.Through the utilization of smart farming,the rice industry can attain sustainable and resilient production systems that could mitigate environmental impact and safeguard food security.Thus,the rice industry holds a bright future in transforming current rice production practices into a new outlook in rice smart farming development.展开更多
The fight against insalubrity in large urban and peri-urban agglomerations is a major challenge in developing countries. This problem is compounded by that of sustainable waste management mechanisms. Indeed, the curre...The fight against insalubrity in large urban and peri-urban agglomerations is a major challenge in developing countries. This problem is compounded by that of sustainable waste management mechanisms. Indeed, the current waste collection system in Guinea has proved inadequate, as moving garbage from point “A” to point “B” is tantamount to “moving the problem”. The aim of this experimental work is to demonstrate the cost-effectiveness and benefits of sustainable waste management. As part of this drive to valorize biodegradable waste, the Waste Management Research Center has undertaken a series of activities ranging from composting organic waste to testing compost on certain crop varieties. An experimental field of 8024 m2 was laid out and treated with 1500 Kg of fine compost in doses ranging from 2.5 to 5 T/ha. Two crop varieties, eggplant and chili, were tested. Compost application increased production yields: 15 to 21 tonnes of eggplant and 10.4 to 11.1 tonnes of chili per hectare. Growth rates compared with usual yields varied from 50% to 64% and from 11% to 17% for eggplant and chili, respectively. This study resulted in an optimum compost dose of 2.5 T/ha for this phase.展开更多
The global shift toward next-generation energy systems is propelled by the urgent need to combat climate change and the dwindling supply of fossil fuels.This review explores the intricate challenges and opportunities ...The global shift toward next-generation energy systems is propelled by the urgent need to combat climate change and the dwindling supply of fossil fuels.This review explores the intricate challenges and opportunities for transitioning to sustainable renewable energy sources such as solar,wind,and hydrogen.This transition economically challenges traditional energy sectors while fostering new industries,promoting job growth,and sustainable economic development.The transition to renewable energy demands social equity,ensuring universal access to affordable energy,and considering community impact.The environmental benefits include a significant reduction in greenhouse gas emissions and a lesser ecological footprint.This study highlights the rapid growth of the global wind power market,which is projected to increase from$112.23 billion in 2022 to$278.43 billion by 2030,with a compound annual growth rate of 13.67%.In addition,the demand for hydrogen is expected to increase,significantly impacting the market with potential cost reductions and making it a critical renewable energy source owing to its affordability and zero emissions.By 2028,renewables are predicted to account for 42%of global electricity generation,with significant contributions from wind and solar photovoltaic(PV)technology,particularly in China,the European Union,the United States,and India.These developments signify a global commitment to diversifying energy sources,reducing emissions,and moving toward cleaner and more sustainable energy solutions.This review offers stakeholders the insights required to smoothly transition to sustainable energy,setting the stage for a resilient future.展开更多
Several actions from both the environmental and human viewpoints have already been made to meet the sustainability goals targeted at food systems.Still,new place-based ideas to improve sustainability are needed.Agroec...Several actions from both the environmental and human viewpoints have already been made to meet the sustainability goals targeted at food systems.Still,new place-based ideas to improve sustainability are needed.Agroecological symbiosis(AES),a novel food system model,is an example of a suggested system-level change to attain sustainability targets;it is a symbiosis of food production and processing using renewable energy that uses its own feedstock.AES has already been found advantageous from the ecological and biophysical viewpoints,but a regional economic evaluation of the model is still lacking.Thus,the aim of our paper is to assess the regional economic impact of a possible systemic change in the food system using the network of agroecological symbiosis(NAES)as an example.We applied scenarios representing different ways of moving towards envisioned NAES models in Mäntsälä,Finland,and a computable general equilibrium model to evaluate the regional economic impact.According to our results,both regional economy and employment would increase,and the regional production base would diversify with NAES implementation applied to the region,but the extent of the benefits varies between scenarios.The scenario that includes change in both public and private food demand,production of bioenergy and utilization of by-products would cause the largest impacts.However,realizing NAES requires investments that may influence the actual implementation of such models.Nonetheless,a change towards NAES can promote an economically and spatially just transition to sustainability,as NAES seems to be economically most beneficial for rural areas.展开更多
The county(city)located on the northern slope of the Kunlun Mountains is the primary area to solidify and extend the success of Xinjiang Uygur Autonomous Region,China in poverty alleviation.Its Sustainable Development...The county(city)located on the northern slope of the Kunlun Mountains is the primary area to solidify and extend the success of Xinjiang Uygur Autonomous Region,China in poverty alleviation.Its Sustainable Development Goals(SDGs)are intertwined with the concerted economic and social development of Xinjiang and the objective of achieving shared prosperity within the region.This study established a sustainable development evaluation framework by selecting 15 SDGs and 20 secondary indicators from the United Nations’SDGs.The aim of this study is to quantitatively assess the progress of SDGs at the county(city)level on the northern slope of the Kunlun Mountains.The results indicate that there are substantial variations in the scores of SDGs among the nine counties and one city located on the northern slope of the Kunlun Mountains.Notable high scores of SDGs are observed in the central and eastern regions,whereas lower scores are prevalent in the western areas.The scores of SDGs,in descending order,are as follows:62.22 for Minfeng County,54.22 for Hotan City,50.21 for Qiemo County,42.54 for Moyu County,41.56 for Ruoqiang County,41.39 for Qira County,39.86 for Lop County,38.25 for Yutian County,38.10 for Pishan County,and 36.87 for Hotan County.The performances of SDGs reveal that Hotan City,Lop County,Minfeng County,and Ruoqiang County have significant sustainable development capacity because they have three or more SDGs ranked as green color.However,Hotan County,Moyu County,Qira County,and Yutian County show the poorest performance,as they lack SDGs with green color.It is important to establish and enhance mechanisms that can ensure sustained income growth among poverty alleviation beneficiaries,sustained improvement in the capacity of rural governance,and the gradual improvement of social security system.These measures will facilitate the effective implementation of SDGs.Finally,this study offers a valuable support for governmental authorities and relevant departments in their decision-making processes.In addition,these results hold significant reference value for assessing SDGs at the county(city)level,particularly in areas characterized by low levels of economic development.展开更多
Worldwide interest has increasingly focused on the sustainable utilization of landscape as a resource in urban areas,emphasizing its ecological,cultural and social significance.This study examines Guilin City,China,as...Worldwide interest has increasingly focused on the sustainable utilization of landscape as a resource in urban areas,emphasizing its ecological,cultural and social significance.This study examines Guilin City,China,as a representative case study due to its rich landscape resources and status as a national innovation demonstration zone for implementing the 2030 Agenda for Sustainable Development.This study uses bibliometric visualization tools like CiteSpace and VOSviewer to analyze research trends from 1980 to 2021 in the Chinese Academic Journal Network Publishing Database(CNKI).The results show increasing academic interest over three stages:initiation(1982-1997),exploration(1998-2004),and diversified development(2005-2021).Contributions are predominantly from local academic and tourism sectors,indicating a strong regional influence;however,relatively weak interinstitutional collaboration occurs,suggesting potential for more integrated research efforts.Primary research is also concentrated within economic disciplines,particularly tourism-related ones.The evolution of research frontiers reveals three main paths:urban development strategies,industrial economic theories and empirical validation,and ecosystem analysis and evaluation.A multidisciplinary approach and stronger collaborative efforts are crucial to enhance research on ecological values and empirical models while supporting evidence-based urban development strategies in Guilin City and comparable cities globally.展开更多
基金support provided by the UKRI via Grant No.EP/T024607/1Royal Society via grant number IES\R2\222208.
文摘Sustainable agriculture plays a crucial role in meeting the growing global demand for food while minimizing adverse environmental impacts from the overuse of synthetic pesticides and conventional fertilizers.In this context,renewable biopolymers being more sustainable offer a viable solution to improve agricultural sustainability and production.Nano/micro-structural supramolecular biopolymers are among these innovative biopolymers that are much sought after for their unique features.These biomaterials have complex hierarchical structures,great stability,adjustable mechanical strength,stimuli-responsiveness,and self-healing attributes.Functional molecules may be added to their flexible structure,for enabling novel agricultural uses.This overview scrutinizes how nano/micro-structural supramolecular biopolymers may radically alter farming practices and solve lingering problems in agricultural sector namely improve agricultural production,soil health,and resource efficiency.Controlled bioactive ingredient released from biopolymers allows the tailored administration of agrochemicals,bioactive agents,and biostimulators as they enhance nutrient absorption,moisture retention,and root growth.Nano/micro-structural supramolecular biopolymers may protect crops by appending antimicrobials and biosensing entities while their eco-friendliness supports sustainable agriculture.Despite their potential,further studies are warranted to understand and optimize their usage in agricultural domain.This effort seeks to bridge the knowledge gap by investigating their applications,challenges,and future prospects in the agricultural sector.Through experimental investigations and theoretical modeling,this overview aims to provide valuable insights into the practical implementation and optimization of supramolecular biopolymers in sustainable agriculture,ultimately contributing to the development of innovative and eco-friendly solutions to enhance agricultural productivity while minimizing environmental impact.
文摘The mining sector historically drove the global economy but at the expense of severe environmental and health repercussions,posing sustainability challenges[1]-[3].Recent advancements on artificial intelligence(AI)are revolutionizing mining through robotic and data-driven innovations[4]-[7].While AI offers mining industry advantages,it is crucial to acknowledge the potential risks associated with its widespread use.Over-reliance on AI may lead to a loss of human control over mining operations in the future,resulting in unpredictable consequences.
文摘This study evaluates the impact of the Pani Panchayat initiative, a community-based water management program, in the Angul and Dhenkanal districts of Odisha. Utilizing a mixed-methods approach, we gathered qualitative and quantitative data through structured interviews with diverse stakeholders, focus group discussions, and surveys. The findings indicate that the Angul district exhibited higher levels of fair elections and improved water access due to better canal maintenance, while the Dhenkanal district faced challenges from industrial water usage. The study also examines the potential of technological advancements, such as real-time water monitoring, to enhance governance. By identifying synergies and gaps with existing water policies, the research provides policy recommendations to promote sustainable water management in alignment with the Sustainable Development Goals 2030.
基金supported by the National Key Research and Development Program of China under the theme“Research on urban sustainable development interactive decision-making and management technologies”[Grant No.2022YFC3802904].
文摘Given the rapid development of China’s new urbanization,cities with different locations and varying functional positioning,resource endowments,and development stages have insufficient scientific and applicable technical tools for implementing the United Nations Sustainable Development Goals(SDGs).City managers and policymakers must urgently establish SDG benchmarks to diagnose city development.Moreover,successful experiences from similar cities regarding sustainable development and self-improvement must be learned from to promote diversified,sustainable development across the country.Furthermore,emerging technologies such as artificial intelligence,the Internet of Things,big data and 5G are widely used in smart cities.Therefore,there is a growing need for“knowledge-based,personalized and intelligent”technologies to support monitoring,evaluation,and decision-making processes facilitating sustainable development in cities.This paper uses standardization as the theoretical support and technical basis.This approach can help clarify the sustainable development processes in China and clarify the evaluation results of and provide data on horizontal city comparisons,which can be used to develop evaluation technology for sustainable development in cities and construct a standardized system.The results provide a standard framework for intelligent assessment and decision-making regarding cities’sustainable development capabilities in China.Evaluating major international standardization institutions reveals that the practices of Chinese national standards should be fully absorbed and integrated to guide the evaluation of smart,resilient,and low-carbon cities.To this end,an indicator library of city sustainable development is proposed to provide standard evaluation technology methods.Finally,analyzing the response relationship of the indicator library to SDGs reveals the need for a standardized knowledge map of sustainable development assessment techniques and methods from the perspective of integrated management for sustainable development in cities.
基金Bundesministerium für Bildung und Forschung,Grant/Award Numbers:03XP0138C,03XP0306C。
文摘The demand for lithium-ion batteries(LIBs)is driven largely by their use in electric vehicles,which is projected to increase dramatically in the future.This great success,however,urgently calls for the efficient recycling of LIBs at the end of their life.Herein,we describe a froth flotation-based process to recycle graphite—the predominant active material for the negative electrode—from spent LIBs and investigate its reuse in newly assembled LIBs.It has been found that the structure and morphology of the recycled graphite are essentially unchanged compared to pristine commercial anode-grade graphite,and despite some minor impurities from the recycling process,the recycled graphite provides a remarkable reversible specific capacity of more than 350 mAh g^(−1).Even more importantly,newly assembled graphite‖NMC532 cells show excellent cycling stability with a capacity retention of 80%after 1000 cycles,that is,comparable to the performance of reference full cells comprising pristine commercial graphite.
文摘The ramifications of global climate change and resource scarcities have made it imperative to re-examine the definition of sustainable energy-storage systems.It is crucial to recognize that not all renewable resources are inherently sustainable,and their full impact on the environment must be assessed.With the proliferation of invasive jellyfish species wreaking havoc on marine ecosystems and economies worldwide,utilizing overabundant jellyfish as a carbon source presents an opportunity to create energy-storage systems that are both financially beneficial and environmentally remediating.Accordingly,a comprehensive approach to sustainability also requires eco-friendly solutions throughout the entire lifecycle,from material sourcing to battery production,without compromising highperformance requirements.Currently,most electrode syntheses for lithium-ion batteries(LIBs) employed are energy-intensive,multiple-steps,complex,and additive-heavy.In response,this work pioneers the straightforward use of low-energy laser irradiation of a jellyfish biomass/silicon nanoparticle blend to encapsulate the silicon nanoparticles in-situ within the as-forming conductive carbonized matrix,creating sustainable and additive-free composite anodes.The self-standing anode is directly synthesized under ambient conditions and requires no post-processing.Here,a laser-synthesized conductive threedimensional porous carbon/silicon composite anode from raw jellyfish biomass for LIBs is presented,displaying outstanding cyclic stability(>1000 cycles),excellent capacity retention(>50% retention after1000 cycles),exceptional coulombic efficiency(>99%),superb reversible gravimetric capacity(>2000 mAh/g),and high rate performance capability(>1.6 A/g),paving a new path to future sustainable energy production.
基金the National Key Research and Development Programme of China(Grant No.2023YFC3804903).
文摘The Sustainable Development Goals(SDGs)are significantly off-course as we reach the midpoint of their 2030 deadline.From a scientific perspective,the critical challenge in achieving the SDGs lies in the need for more scientific principles to understand the complex socio-ecological systems(SES)and their interactions influencing the 17 SDGs.Here,we propose a scientific framework to clarify the common scientific principles and the rational treatment of diversity under these principles.The framework’s core is revealing the complex mechanisms underlying the achievement of each Sustainable Development Goal(SDG)and SDG interactions.Building upon the identified mechanisms,complex SES models can be established,and the implementation of SDGs can be formulated as a multi-objective optimization problem,seeking a compromise in competition between essential costs and desired benefits.Our framework can assist countries,and even the world in accelerating progress towards the SDGs.
基金supported by the National Key Research and Development Plan[Grant No.2022YFC3802901-01],the Zaozhuang Independent Innovation and Achievement Transformation Plan[Grant No.2021GH21].
文摘In China,the Innovation Demonstration Zone for the National Sustainable Development Agenda is a key initiative for executing the United Nations(UN)2030 Agenda for Sustainable Development.The Zone also plays critical roles in addressing the developmental bottlenecks that China faces and sharing Chinese insights into global sustainable development efforts.On July 15,2022,the State Council endorsed the Zone’s establishment in Zaozhuang City,Shandong Province,where it focuses on innovation-led sustainable development in rural areas.Research into the levels,impediments,interdependencies,and evolutionary trends of rural sustainable development is crucial.Therefore,this research aimed to assist in comprehensively assessing developmental challenges and facilitating the harmonious advancement of social,economic,and environmental aspects in rural areas.In pursuit of the three fundamental dimensions of the UN’s Sustainable Development Goals(SDGs),namely development’s drivers,quality,and equity,this study was grounded in China’s national Rural Revitalization Strategy and the demands of sustainable development strategies.It also aligns with the UN 2030 Agenda for Sustainable Development and the associated SDG indicators.Focusing on four key areas,namely production elements,natural elements,social elements,and rural governance,this study developed an evaluation index system for assessing the level of rural sustainable development.It employed a range of analytical models,including the game theory-based combination empowerment method,barrier degree model,coupling degree model,coupling coordination degree model,and gray prediction GM(1,1)model,to analyze the status and evolving trends of rural sustainable development in Zaozhuang City from 2015 to 2022.The key findings were as follows:①Relative to the baseline year 2015,the sustainable development level in Zaozhuang’s rural areas has shifted toward an improved state overall.②The primary barrier to achieving rural sustainable development in Zaozhuang is the city’s rural governance system.③While the components of rural sustainable development in Zaozhuang are in the early stages of both basic and moderate coordination,an overall enhancement has occurred in their integrative coordination.④Between 2023 and 2025,the level of integrative coordination in Zaozhuang is expected to rise steadily.However,reaching a state of advanced coordination will require additional time for development.
文摘Current globalization trends and important breakthroughs globally need a complete study of heavy metal contamination, its causes, its impacts on human and environmental health, and different remediation strategies. Heavy metal pollution is mostly produced by urbanization and industry, which threatens ecosystems and human health. Herein, we discuss a sustainable environmental restoration strategy employing phytoremediation for heavy metal pollution, the carcinogenic, mutagenic, and cytotoxic effects of heavy metals such as cadmium, copper, mercury, selenium, zinc, arsenic, chromium, lead, nickel, and silver, which may be fatal. Phytoremediation, which was prioritized, uses plants to remove, accumulate, and depollute pollutants. This eco-friendly method may safely collect, accumulate, and detoxify toxins using plants, making it popular. This study covers phytostabilization, phytodegradation, rhizodegradation, phytoextraction, phytovolatilization, and rhizofiltration. A phytoremediation process’s efficiency in varied environmental circumstances depends on these components’ complex interplay. This paper also introduces developing phytoremediation approaches including microbe-assisted, chemical-assisted, and organic or bio-char use. These advancements attempt to overcome conventional phytoremediation’s limitations, such as limited suitable plant species, location problems, and sluggish remediation. Current research includes machine learning techniques and computer modeling, biostimulation, genetic engineering, bioaugmentation, and hybrid remediation. These front-line solutions show that phytoremediation research is developing towards transdisciplinary efficiency enhancement. We acknowledge phytoremediation’s promise but also its drawbacks, such as site-specific variables, biomass buildup, and sluggish remediation, as well as ongoing research to address them. In conclusion, heavy metal pollution threatens the ecology and public health and must be reduced. Phytoremediation treats heavy metal pollution in different ways. Over time, phytoremediation systems have developed unique ways that improve efficiency. Despite difficulties like site-specificity, sluggish remediation, and biomass buildup potential, phytoremediation is still a vital tool for environmental sustainability.
基金founded by Jiangsu Agricultural Science and Technology Innovation Fund(CX(20)3179)Dongminghuanghetan Ecological Agriculture Co.,Ltd(204032897)+1 种基金partially funded funding from the European Union’s Horizon 2020 research and innovation programme under grant agreement no.861976,project SUSINCHAINthe German Federal Ministry of Education and Research(BMBF),in the frame of FACCE-SURPLUS/FACCE-JPI project UpWaste,grant number 031B0934A。
文摘In response to the rapid increase in world population and subsequent demands for food,edible insects represent an alternative food source for humans that is rich in proteins,amino acids and minerals.Entomophagy is a tradition in many countries including China and Thailand,and edible insects have attracted a lot of attention in Western World due to their suitable nutrient composition,high mineral content(e.g.,Fe,Zn,Ca,Mg)and potential use as a supplement in human diet.In this study,we surveyed mineral content in seven insect orders and 67 species of mass produced and wild-harvested edible insects.The total content of essential elements in edible insects was very high in Tenebrio molitor,Bombyx mori,and Zonocerus variegatus.The heavy metal content(summarized for eight species)was below the maximum limit allowed for safe consumption.Sustainable supply of minerals derived from insect biomass is complicated due to the high variations of mineral content in insects and the potential of its change due to processing.
文摘Finding sustainable energy resources is essential to face the increasing energy demand.Trees are an important part of ancient architecture but are becoming rare in urban areas.Trees can control and tune the pedestrian-level wind velocity and thermal condition.In this study,a numerical investigation is employed to assess the role of trees planted in the windward direction of the building complex on the thermal and pedestrian wind velocity conditions around/inside a pre-education building located in the center of the complex.Compared to the previous studies(which considered only outside buildings),this work considers the effects of trees on microclimate change both inside/outside buildings.Effects of different parameters including the leaf area density and number of trees,number of rows,far-field velocity magnitude,and thermal condition around the main building are assessed.The results show that the flow velocity in the spacing between the first-row buildings is reduced by 30%-40% when the one-row trees with 2 m height are planted 15 m farther than the buildings.Furthermore,two rows of trees are more effective in higher velocities and reduce the maximum velocity by about 50%.The investigation shows that trees also could reduce the temperature by about 1℃around the building.
基金Supported by National Natural Science Foundation of China(Nos.52205476,92160301)Youth Talent Support Project of Jiangsu Provincial Association of Science and Technology of China(Grant No.TJ-2023-070)+2 种基金Science Center for Gas Turbine Project(Grant No.P2023-B-IV-003-001)Fund of Prospective Layout of Scientific Research for the Nanjing University of Aeronautics and Astronautics of China(Grant No.1005-ILB23025-1A)Fund of Jiangsu Key Laboratory of Precision and Micro-Manufacturing Technology of China(Grant No.1005-ZAA20003-14).
文摘Grinding,a critical precision machining process for difficult-to-cut alloys,has undergone continual technological advancements to improve machining efficiency.However,the sustainability of this process is gaining heightened attention due to significant challenges associated with the substantial specific grinding energy and the extensive heat generated when working with difficult-to-cut alloys,renowned for their exceptional physical and mechanical properties.In response to these challenges,the widespread application of massive coolant in manufacturing industries to dissipate grinding heat has led to complex post-cleaning and disposal processes.This,in turn,has resulted in issues such as large energy consumption,a considerable carbon footprint,and concerns related to worker health and safety,which have become the main factors that restrict the development of grinding technology.This paper provides a holistic review of sustainability in grinding difficult-to-cut alloys,encompassing current trends and future directions.The examination extends to developing grinding technologies explicitly tailored for these alloys,comprehensively evaluating their sustainability performance.Additionally,the exploration delves into innovative sustainable technologies,such as heat pipe/oscillating heat pipe grinding wheels,minimum quantity lubrication,cryogenic cooling,and others.These groundbreaking technologies aim to reduce dependence on hazardous coolants,minimizing energy and resource consumption and carbon emissions associated with coolant-related or subsequent disposal processes.The essence of these technologies lies in their potential to revolutionize traditional grinding practices,presenting environmentally friendly alternatives.Finally,future development trends and research directions are put forward to pursue the current limitation of sustainable grinding for difficult-to-cut alloys.This paper can guide future research and development efforts toward more environmentally friendly grinding operations by understanding the current state of sustainable grinding and identifying emerging trends.
文摘This issue covers the papers on two special themes:(1)Mineral resources from deep sea—Science and Engineering and(2)Planning and development of underground space and infrastructure for sustainable and liveable cities.
基金National Key Research and Development Program of China,Grant/Award Number:2020YFA0908200National Natural Science Foundation of China,Grant/Award Numbers:T2225003,52073060,61927805+1 种基金Shenzhen Fundamental Research Program,Grant/Award Numbers:JCYJ20190813152616459,JCYJ20210324133214038Basic and Applied Basic Research Foundation of Guangdong Province,Grant/Award Number:2021B1515120054。
文摘Microfibers from natural products are endowed with remarkable biocompatibility,biodegradability,sustainable utilization as well as environmental protection char-acteristics etc.Benefitting from these advantages,microfibers have demonstrated their prominent values in biomedical applications.This review comprehensively summarizes the relevant research progress of sustainable microfibers from natural products and their biomedical applications.To begin,common natural elements are introduced for the microfiber fabrication.After that,the focus is on the specific fabri-cation technology and process.Subsequently,biomedical applications of sustainable microfibers are discussed in detail.Last but not least,the main challenges during the development process are summarized,followed by a vision for future development opportunities.
基金The authors wish to acknowledge the Ministry of Higher Education,Malaysia for financial support via the Transdisciplinary Research Grant Scheme Project(Grant No.TRGS/1/2020/UPM/02/7).
文摘Rice has a huge impact on socio-economic growth,and ensuring its sustainability and optimal utilization is vital.This review provides an insight into the role of smart farming in enhancing rice productivity.The applications of smart farming in rice production including yield estimation,smart irrigation systems,monitoring disease and growth,and predicting rice quality and classifications are highlighted.The challenges of smart farming in sustainable rice production to enhance the understanding of researchers,policymakers,and stakeholders are discussed.Numerous efforts have been exerted to combat the issues in rice production in order to promote rice sector development.The effective implementation of smart farming in rice production has been facilitated by various technical advancements,particularly the integration of the Internet of Things and artificial intelligence.The future prospects of smart farming in transforming existing rice production practices are also elucidated.Through the utilization of smart farming,the rice industry can attain sustainable and resilient production systems that could mitigate environmental impact and safeguard food security.Thus,the rice industry holds a bright future in transforming current rice production practices into a new outlook in rice smart farming development.
文摘The fight against insalubrity in large urban and peri-urban agglomerations is a major challenge in developing countries. This problem is compounded by that of sustainable waste management mechanisms. Indeed, the current waste collection system in Guinea has proved inadequate, as moving garbage from point “A” to point “B” is tantamount to “moving the problem”. The aim of this experimental work is to demonstrate the cost-effectiveness and benefits of sustainable waste management. As part of this drive to valorize biodegradable waste, the Waste Management Research Center has undertaken a series of activities ranging from composting organic waste to testing compost on certain crop varieties. An experimental field of 8024 m2 was laid out and treated with 1500 Kg of fine compost in doses ranging from 2.5 to 5 T/ha. Two crop varieties, eggplant and chili, were tested. Compost application increased production yields: 15 to 21 tonnes of eggplant and 10.4 to 11.1 tonnes of chili per hectare. Growth rates compared with usual yields varied from 50% to 64% and from 11% to 17% for eggplant and chili, respectively. This study resulted in an optimum compost dose of 2.5 T/ha for this phase.
文摘The global shift toward next-generation energy systems is propelled by the urgent need to combat climate change and the dwindling supply of fossil fuels.This review explores the intricate challenges and opportunities for transitioning to sustainable renewable energy sources such as solar,wind,and hydrogen.This transition economically challenges traditional energy sectors while fostering new industries,promoting job growth,and sustainable economic development.The transition to renewable energy demands social equity,ensuring universal access to affordable energy,and considering community impact.The environmental benefits include a significant reduction in greenhouse gas emissions and a lesser ecological footprint.This study highlights the rapid growth of the global wind power market,which is projected to increase from$112.23 billion in 2022 to$278.43 billion by 2030,with a compound annual growth rate of 13.67%.In addition,the demand for hydrogen is expected to increase,significantly impacting the market with potential cost reductions and making it a critical renewable energy source owing to its affordability and zero emissions.By 2028,renewables are predicted to account for 42%of global electricity generation,with significant contributions from wind and solar photovoltaic(PV)technology,particularly in China,the European Union,the United States,and India.These developments signify a global commitment to diversifying energy sources,reducing emissions,and moving toward cleaner and more sustainable energy solutions.This review offers stakeholders the insights required to smoothly transition to sustainable energy,setting the stage for a resilient future.
文摘Several actions from both the environmental and human viewpoints have already been made to meet the sustainability goals targeted at food systems.Still,new place-based ideas to improve sustainability are needed.Agroecological symbiosis(AES),a novel food system model,is an example of a suggested system-level change to attain sustainability targets;it is a symbiosis of food production and processing using renewable energy that uses its own feedstock.AES has already been found advantageous from the ecological and biophysical viewpoints,but a regional economic evaluation of the model is still lacking.Thus,the aim of our paper is to assess the regional economic impact of a possible systemic change in the food system using the network of agroecological symbiosis(NAES)as an example.We applied scenarios representing different ways of moving towards envisioned NAES models in Mäntsälä,Finland,and a computable general equilibrium model to evaluate the regional economic impact.According to our results,both regional economy and employment would increase,and the regional production base would diversify with NAES implementation applied to the region,but the extent of the benefits varies between scenarios.The scenario that includes change in both public and private food demand,production of bioenergy and utilization of by-products would cause the largest impacts.However,realizing NAES requires investments that may influence the actual implementation of such models.Nonetheless,a change towards NAES can promote an economically and spatially just transition to sustainability,as NAES seems to be economically most beneficial for rural areas.
基金financially supported by the Natural Science Foundation of Xinjiang Uygur Autonomous Region,China(2022D01B234).
文摘The county(city)located on the northern slope of the Kunlun Mountains is the primary area to solidify and extend the success of Xinjiang Uygur Autonomous Region,China in poverty alleviation.Its Sustainable Development Goals(SDGs)are intertwined with the concerted economic and social development of Xinjiang and the objective of achieving shared prosperity within the region.This study established a sustainable development evaluation framework by selecting 15 SDGs and 20 secondary indicators from the United Nations’SDGs.The aim of this study is to quantitatively assess the progress of SDGs at the county(city)level on the northern slope of the Kunlun Mountains.The results indicate that there are substantial variations in the scores of SDGs among the nine counties and one city located on the northern slope of the Kunlun Mountains.Notable high scores of SDGs are observed in the central and eastern regions,whereas lower scores are prevalent in the western areas.The scores of SDGs,in descending order,are as follows:62.22 for Minfeng County,54.22 for Hotan City,50.21 for Qiemo County,42.54 for Moyu County,41.56 for Ruoqiang County,41.39 for Qira County,39.86 for Lop County,38.25 for Yutian County,38.10 for Pishan County,and 36.87 for Hotan County.The performances of SDGs reveal that Hotan City,Lop County,Minfeng County,and Ruoqiang County have significant sustainable development capacity because they have three or more SDGs ranked as green color.However,Hotan County,Moyu County,Qira County,and Yutian County show the poorest performance,as they lack SDGs with green color.It is important to establish and enhance mechanisms that can ensure sustained income growth among poverty alleviation beneficiaries,sustained improvement in the capacity of rural governance,and the gradual improvement of social security system.These measures will facilitate the effective implementation of SDGs.Finally,this study offers a valuable support for governmental authorities and relevant departments in their decision-making processes.In addition,these results hold significant reference value for assessing SDGs at the county(city)level,particularly in areas characterized by low levels of economic development.
基金supported by the National Key Research and Development Program of China under the theme“Research on urban sustainable development interactive decision-making and management technologies”[Grant No.2022YFC3802904].
文摘Worldwide interest has increasingly focused on the sustainable utilization of landscape as a resource in urban areas,emphasizing its ecological,cultural and social significance.This study examines Guilin City,China,as a representative case study due to its rich landscape resources and status as a national innovation demonstration zone for implementing the 2030 Agenda for Sustainable Development.This study uses bibliometric visualization tools like CiteSpace and VOSviewer to analyze research trends from 1980 to 2021 in the Chinese Academic Journal Network Publishing Database(CNKI).The results show increasing academic interest over three stages:initiation(1982-1997),exploration(1998-2004),and diversified development(2005-2021).Contributions are predominantly from local academic and tourism sectors,indicating a strong regional influence;however,relatively weak interinstitutional collaboration occurs,suggesting potential for more integrated research efforts.Primary research is also concentrated within economic disciplines,particularly tourism-related ones.The evolution of research frontiers reveals three main paths:urban development strategies,industrial economic theories and empirical validation,and ecosystem analysis and evaluation.A multidisciplinary approach and stronger collaborative efforts are crucial to enhance research on ecological values and empirical models while supporting evidence-based urban development strategies in Guilin City and comparable cities globally.