[Objective] This study aimed to investigate the salt-tolerance mechanism of sweet potato.[Method]Two sweet potato varieties of Xu 25-2(salt-tolerant cultivar)and Triumph 100(salt-sensitive cultivar)were treated by sod...[Objective] This study aimed to investigate the salt-tolerance mechanism of sweet potato.[Method]Two sweet potato varieties of Xu 25-2(salt-tolerant cultivar)and Triumph 100(salt-sensitive cultivar)were treated by sodium chloride with the concentration of 0 mmol/L and 100 mmol/L.After 20 days,Na+ content and Na+/K+ ratio in the roots,shoots and leave were determined by the flame photometer,while dry weight and fresh weight of roots,shoots and leave in different varieties were also studied.[Result]The growth of two sweet potato varieties was inhibited under salt stress,so the plant became shorter,leaf and root became fewer,dry weight of roots and leave decreased,but seedlings of Xu 25-2 were inhibited slightly.Furthermore,Na+ content and Na+/K+ ratio in roots,shoots and leaves of two sweet potato varieties increased.Na+ content of salt-tolerant Xu 25-2 was low in roots,shoots and leaves,while Na+ content of salt-sensitive Triumph 100 was high in shoots and leave of seedlings,but the change range of Xu 25-2 was less than that of Triumph 100.[Conclusion]The lower Na+ content and Na+/K+ ratio in leaves under salt stress were the most important characteristics for salt-tolerance of sweet potato varieties.展开更多
This study consisted to evaluate the effects of ecological practices on the yield performance of the JEWEL of orange-fleshed sweet potato (Ipomoea batatas (L.) Lam). The study was conducted in a Sudano-Sahelian croppi...This study consisted to evaluate the effects of ecological practices on the yield performance of the JEWEL of orange-fleshed sweet potato (Ipomoea batatas (L.) Lam). The study was conducted in a Sudano-Sahelian cropping system (Lantargou, eastern region of Burkina Faso). Agro-ecological practices consisted of the inputs of 3.20 t/ha of compost + 2.45 t/ha of wood ash (CO + WA);4.90 t/ha of wood ash (WA);6.40 t/ha of compost (CO) were compared to control with no inputs (T<sub>0</sub>). Each treatment was repeated four times. The crop management consisted of plowing, harrowing, raising of ridges with 40 cm height, burying of treatments, transplanting of cuttings, two weeding’s, and using of biopesticide called PIOL for crop protection. Composite soil samples per treatment were also collected at tuber harvest and analyzed to determine the effects of treatments on residual soil fertility. Results showed that the plant heights and diameters under the CO were significantly (P < 0.001) improved by 16% and 12% compared to T<sub>0</sub>. The WA treatment significantly increased the number of large tubers by 43% (P ≤ 0.01) compared to T<sub>0</sub>. Total tuber numbers, large tuber numbers and tuber yields of sweet potato under CO + WA were significantly (P < 0.001) and respectively improved by 27%, 50% and 31% compared to T<sub>0</sub>. All treatments increased soil organic matter, N, P and K contents, and reduced soil acidity compared with those obtained under T<sub>0</sub>. Soil K content was improved by 39% under CO + WA, and soil N content by 34% under WA compared to T<sub>0</sub>. Soil C/N ratio under CO + WA was reduced by 20% compared others treatments. But, the CO + WA treatment outperformed by improving residual soil N content by 38%, and the WA treatment by increasing soil K content by 50% compared to T<sub>0</sub>. In addition, soil pHH<sub>2</sub>O increased by 1.2 units under WA treatment compared to T<sub>0</sub>. As conclusion, the application of 6.4 t/ha of compost performed well to improve the vegetative growth of orange-fleshed sweet potato while the inputs of 3.2 t/ha of compost + 2.45 t/ha of wood ash were efficacy to significantly increase the tuber yields and improve the residual fertility of soil.展开更多
Allelopathic compounds have the potential to inhibit the growth and development of other organisms in a diverse manner ranging from shifting nutrients and enhancing their growth to inflicting diseases. In addition, th...Allelopathic compounds have the potential to inhibit the growth and development of other organisms in a diverse manner ranging from shifting nutrients and enhancing their growth to inflicting diseases. In addition, these compounds influence seedling growth and seed germination of various crops. The goal of this study was to identify and quantify different allelochemicals in various sweet potato cultivars through high-performance liquid chromatography techniques. Selected sweet potato slips (weight: 2.0 - 2.5 grams/slip) were propagated in separate glass tubes filled with 10.0 mL distilled water. Water extract from each glass tube was collected after 2, 4, and 6 weeks after transplanting (WAP) to identify and quantify allelochemical compounds by comparing their peaks with the retention time of standards. Results show that the concentration of allelochemicals in water extract was increased from 2 to 4 WAP but remained constant in the sixth week. Quantitative analysis revealed that the amount of chlorogenic acid was higher in all sweet potato cultivars compared to other allelochemicals. Some sweet potato cultivars, A5 and A39, exhibited higher allelopathy (18.28 - 19.37 ppm/slip) and reduced the height and biomass of Palmer amaranth the most due to the presence of increased concentration of combined allelochemicals, while other cultivars produced lesser allelochemicals (10.90 ppm/slip) and did not reduce the growth of the weed species. Allelopathic sweet potato cultivars high in chlorogenic acid production can effectively suppress Palmer amaranth with minimal dependence on chemicals to manage weeds and harmful pests under sustainable agricultural system.展开更多
以我国大面积种植的典型旱地作物甘薯为研究对象,进行可控条件的不同水分处理的盆栽试验,研究了水分胁迫下甘薯各典型生育期各器官碳同位素判别值(Δ13C)、水分利用效率(WUE)及其之间的关系。试验设3个水分条件:分别为田间持水量的50%(W...以我国大面积种植的典型旱地作物甘薯为研究对象,进行可控条件的不同水分处理的盆栽试验,研究了水分胁迫下甘薯各典型生育期各器官碳同位素判别值(Δ13C)、水分利用效率(WUE)及其之间的关系。试验设3个水分条件:分别为田间持水量的50%(W1),75%(W2),100%(W3)。结果表明,各生育期各器官生物量均随着水分增加而增加,在W3处理时达到最大,各生育期WUE则在W1处理时达到最大。尽管W3处理最终总生物量积累及产量最高,但高水分处理下将降低光合同化物向地下部的分配比例;同时,甘薯光合速率和Ru Bis CO活性之间呈正相关关系;甘薯不同生育期不同部位的Δ13C各不相同,其中根的Δ13C最小,然后依次为叶柄、茎秆、叶片,表明甘薯叶片光合同化物质在各器官中分配时发生碳同位素的分馏作用;在甘薯的各生育期,各器官Δ13C和瞬时WUE呈一致性的负相关关系。综上所述,碳同位素可以作为灵敏简单、快速准确的甘薯WUE的评价方法。展开更多
基金Supported by the National Natural Science Foundation(30670177)Scientific Research Foundation for the Outstanding Young Scientist of Shangdong Province(006BS06002)National Ministry of Education Doctoral Fund(20050445003)~~
文摘[Objective] This study aimed to investigate the salt-tolerance mechanism of sweet potato.[Method]Two sweet potato varieties of Xu 25-2(salt-tolerant cultivar)and Triumph 100(salt-sensitive cultivar)were treated by sodium chloride with the concentration of 0 mmol/L and 100 mmol/L.After 20 days,Na+ content and Na+/K+ ratio in the roots,shoots and leave were determined by the flame photometer,while dry weight and fresh weight of roots,shoots and leave in different varieties were also studied.[Result]The growth of two sweet potato varieties was inhibited under salt stress,so the plant became shorter,leaf and root became fewer,dry weight of roots and leave decreased,but seedlings of Xu 25-2 were inhibited slightly.Furthermore,Na+ content and Na+/K+ ratio in roots,shoots and leaves of two sweet potato varieties increased.Na+ content of salt-tolerant Xu 25-2 was low in roots,shoots and leaves,while Na+ content of salt-sensitive Triumph 100 was high in shoots and leave of seedlings,but the change range of Xu 25-2 was less than that of Triumph 100.[Conclusion]The lower Na+ content and Na+/K+ ratio in leaves under salt stress were the most important characteristics for salt-tolerance of sweet potato varieties.
文摘This study consisted to evaluate the effects of ecological practices on the yield performance of the JEWEL of orange-fleshed sweet potato (Ipomoea batatas (L.) Lam). The study was conducted in a Sudano-Sahelian cropping system (Lantargou, eastern region of Burkina Faso). Agro-ecological practices consisted of the inputs of 3.20 t/ha of compost + 2.45 t/ha of wood ash (CO + WA);4.90 t/ha of wood ash (WA);6.40 t/ha of compost (CO) were compared to control with no inputs (T<sub>0</sub>). Each treatment was repeated four times. The crop management consisted of plowing, harrowing, raising of ridges with 40 cm height, burying of treatments, transplanting of cuttings, two weeding’s, and using of biopesticide called PIOL for crop protection. Composite soil samples per treatment were also collected at tuber harvest and analyzed to determine the effects of treatments on residual soil fertility. Results showed that the plant heights and diameters under the CO were significantly (P < 0.001) improved by 16% and 12% compared to T<sub>0</sub>. The WA treatment significantly increased the number of large tubers by 43% (P ≤ 0.01) compared to T<sub>0</sub>. Total tuber numbers, large tuber numbers and tuber yields of sweet potato under CO + WA were significantly (P < 0.001) and respectively improved by 27%, 50% and 31% compared to T<sub>0</sub>. All treatments increased soil organic matter, N, P and K contents, and reduced soil acidity compared with those obtained under T<sub>0</sub>. Soil K content was improved by 39% under CO + WA, and soil N content by 34% under WA compared to T<sub>0</sub>. Soil C/N ratio under CO + WA was reduced by 20% compared others treatments. But, the CO + WA treatment outperformed by improving residual soil N content by 38%, and the WA treatment by increasing soil K content by 50% compared to T<sub>0</sub>. In addition, soil pHH<sub>2</sub>O increased by 1.2 units under WA treatment compared to T<sub>0</sub>. As conclusion, the application of 6.4 t/ha of compost performed well to improve the vegetative growth of orange-fleshed sweet potato while the inputs of 3.2 t/ha of compost + 2.45 t/ha of wood ash were efficacy to significantly increase the tuber yields and improve the residual fertility of soil.
文摘Allelopathic compounds have the potential to inhibit the growth and development of other organisms in a diverse manner ranging from shifting nutrients and enhancing their growth to inflicting diseases. In addition, these compounds influence seedling growth and seed germination of various crops. The goal of this study was to identify and quantify different allelochemicals in various sweet potato cultivars through high-performance liquid chromatography techniques. Selected sweet potato slips (weight: 2.0 - 2.5 grams/slip) were propagated in separate glass tubes filled with 10.0 mL distilled water. Water extract from each glass tube was collected after 2, 4, and 6 weeks after transplanting (WAP) to identify and quantify allelochemical compounds by comparing their peaks with the retention time of standards. Results show that the concentration of allelochemicals in water extract was increased from 2 to 4 WAP but remained constant in the sixth week. Quantitative analysis revealed that the amount of chlorogenic acid was higher in all sweet potato cultivars compared to other allelochemicals. Some sweet potato cultivars, A5 and A39, exhibited higher allelopathy (18.28 - 19.37 ppm/slip) and reduced the height and biomass of Palmer amaranth the most due to the presence of increased concentration of combined allelochemicals, while other cultivars produced lesser allelochemicals (10.90 ppm/slip) and did not reduce the growth of the weed species. Allelopathic sweet potato cultivars high in chlorogenic acid production can effectively suppress Palmer amaranth with minimal dependence on chemicals to manage weeds and harmful pests under sustainable agricultural system.
文摘以我国大面积种植的典型旱地作物甘薯为研究对象,进行可控条件的不同水分处理的盆栽试验,研究了水分胁迫下甘薯各典型生育期各器官碳同位素判别值(Δ13C)、水分利用效率(WUE)及其之间的关系。试验设3个水分条件:分别为田间持水量的50%(W1),75%(W2),100%(W3)。结果表明,各生育期各器官生物量均随着水分增加而增加,在W3处理时达到最大,各生育期WUE则在W1处理时达到最大。尽管W3处理最终总生物量积累及产量最高,但高水分处理下将降低光合同化物向地下部的分配比例;同时,甘薯光合速率和Ru Bis CO活性之间呈正相关关系;甘薯不同生育期不同部位的Δ13C各不相同,其中根的Δ13C最小,然后依次为叶柄、茎秆、叶片,表明甘薯叶片光合同化物质在各器官中分配时发生碳同位素的分馏作用;在甘薯的各生育期,各器官Δ13C和瞬时WUE呈一致性的负相关关系。综上所述,碳同位素可以作为灵敏简单、快速准确的甘薯WUE的评价方法。