Utilizing the 45 a European Centre for Medium-Range Weather Forecasts (ECMWF) reanalysis wave da- ta (ERA-40), the long-term trend of the sea surface wind speed and (wind wave, swell, mixed wave) wave height in ...Utilizing the 45 a European Centre for Medium-Range Weather Forecasts (ECMWF) reanalysis wave da- ta (ERA-40), the long-term trend of the sea surface wind speed and (wind wave, swell, mixed wave) wave height in the global ocean at grid point 1.5°× 1.5° during the last 44 a is analyzed. It is discovered that a ma- jority of global ocean swell wave height exhibits a significant linear increasing trend (2-8 cm/decade), the distribution of annual linear trend of the significant wave height (SWH) has good consistency with that of the swell wave height. The sea surface wind speed shows an annually linear increasing trend mainly con- centrated in the most waters of Southern Hemisphere westerlies, high latitude of the North Pacific, Indian Ocean north of 30°S, the waters near the western equatorial Pacific and low latitudes of the Atlantic waters, and the annually linear decreasing mainly in central and eastern equator of the Pacific, Juan. Fernandez Archipelago, the waters near South Georgia Island in the Atlantic waters. The linear variational distribution characteristic of the wind wave height is similar to that of the sea surface wind speed. Another find is that the swell is dominant in the mixed wave, the swell index in the central ocean is generally greater than that in the offshore, and the swell index in the eastern ocean coast is greater than that in the western ocean inshore, and in year-round hemisphere westerlies the swell index is relatively low.展开更多
The existence of three well-defined tongue-shaped zones of swell dominance,termed as 'swell pools',in the Pacific,the Atlantic and the Indian Oceans,was reported by Chen et al.(2002)using satellite data.In thi...The existence of three well-defined tongue-shaped zones of swell dominance,termed as 'swell pools',in the Pacific,the Atlantic and the Indian Oceans,was reported by Chen et al.(2002)using satellite data.In this paper,the ECMWF Re-analyses wind wave data,including wind speed,significant wave height,averaged wave period and direction,are applied to verify the existence of these swell pools.The swell indices calculated from wave height,wave age and correlation coefficient are used to identify swell events.The wave age swell index can be more appropriately related to physical processes compared to the other two swell indices.Based on the ECMWF data the swell pools in the Pacific and the Atlantic Oceans are confirmed,but the expected swell pool in the Indian Ocean is not pronounced.The seasonal variations of global and hemispherical swell indices are investigated,and the argument that swells in the pools seemed to originate mostly from the winter hemisphere is supported by the seasonal variation of the averaged wave direction.The northward bending of the swell pools in the Pacific and the Atlantic Oceans in summer is not revealed by the ECMWF data.The swell pool in the Indian Ocean and the summer northward bending of the swell pools in the Pacific and the Atlan-tic Oceans need to be further verified by other datasets.展开更多
The wind-sea and swell climates in the China Seas are investigated by using the 27-yr Integrated Ocean Waves for Geophysical and other Applications(IOWAGA)hindcast data.A comparison is made between the significant wav...The wind-sea and swell climates in the China Seas are investigated by using the 27-yr Integrated Ocean Waves for Geophysical and other Applications(IOWAGA)hindcast data.A comparison is made between the significant wave height from the IOWAGA hindcasts and that from a jointly calibrated altimetry dataset,showing the good performance of the IOWAGA hindcasts in the China Seas.A simple but practical method of diagnosing whether the sea state is wind-sea-dominant or swell-dominant is proposed based on spectral partitioning.Different from the characteristics of wind-seas and swells in the open ocean,the wave fields in the enclosed seas such as the China Seas are predominated by wind-sea events in respect of both frequencies of occurrences and energy weights,due to the island sheltering and limited fetches.The energy weights of wind-seas in a given location is usually more significant than the occurrence probability of wind-sea-dominated events,as the wave energy is higher in the wind-sea events than in the swell events on average and extreme wave heights are mostly related to wind-seas.The most energetic swells in the China Seas(and other enclosed seas)are‘local swells’,having just propagated out of their generation areas.However,the swells coming from the West Pacific also play an important role in the wave climate of the China Seas,which can only be revealed by partitioning different swell systems in the wave spectra as the energy of them is significantly less than the‘local swells’.展开更多
This paper describes an investigation of the generation of desired sea states in a numerical wave model. Bimodal sea states containing energetic swell components can be coastal hazards along coastlines exposed to larg...This paper describes an investigation of the generation of desired sea states in a numerical wave model. Bimodal sea states containing energetic swell components can be coastal hazards along coastlines exposed to large oceanic fetches. Investigating the effects of long-period bimodal seas requires large computational domains and increased running time to ensure the development of the desired sea state. Long computational runs can cause mass stability issues due to the Stokes drift and wave reflection, which in turn affect results through the variation of the water level. A numerical wave flume, NEWRANS, was used to investigate two wave generation methods: the wave paddle method, allowing for a smaller domain; and the internal mass source function method, providing an open boundary allowing reflected waves to leave the domain. The two wave generation methods were validated against experimental data by comparing the wave generation accuracy and the variance of mass in the model during simulations. Results show that the wave paddle method not only accurately generates the desired sea state but also provides a more stable simulation, in which mass fluctuation has less of an effect on the water depth during the long-duration simulations. As a result, it is suggested that the wave paddle method with active wave absorption is preferable to the internal wave maker option when investigating intermediate-depth long-period bimodal seas for long-duration simulations.展开更多
There exists a tongue-shaped swell-dominance pool known as Swell Pool(SP) in the Eastern Pacific region.The monthly-mean wave transports(WT) for each month of 2000 is computed using the wave products of ECMWF rean...There exists a tongue-shaped swell-dominance pool known as Swell Pool(SP) in the Eastern Pacific region.The monthly-mean wave transports(WT) for each month of 2000 is computed using the wave products of ECMWF reanalysis data.By comparing the 2000 monthly-mean WT and monthly-mean wind field from QUICKSCAT,large differences are found between the wave transport direction and the wind direction over the Eastern Pacific.This may serve as an evidence for the existence of the SP in this region.The work done in this study indicates that the sources of swell in the Tropical Eastern Pacific(TEP) are in the westerly regions of the Southern and Northern Pacific.展开更多
Based on the simulation with SWAN wave model and data of ERA-Interim from 1979 to 2016, how the waves propagate globally and why swell pools distribute in the eastern ocean were investigated in this study. The simulat...Based on the simulation with SWAN wave model and data of ERA-Interim from 1979 to 2016, how the waves propagate globally and why swell pools distribute in the eastern ocean were investigated in this study. The simulation results show that waves from North Pacific and North Atlantic mainly propagate southeastward or southward and swells generated in Southern Ocean spread northeastward. The waves from high latitude regions spread along the east coast and encounter in the tropical Pacific and Atlantic to form swell fronts around equator and then turn eastward. As the weak wind field with numerous swell inflows, swell pools are gener- ally located on the eastern side of the ocean basin, where the swell index S are greater than 0.9 calculated using ERA-20C data for the period of 1981 2010. Another remarkable feature is that swell pools move southward and split into two parts in winter, while they move northward and merge together in summer.展开更多
From measurements by a circular array consisting of 18 wave gauges in a large wave tank, directional spectra of swell in deep water are systematically investigated with maximum likelihood method. It is shown that the ...From measurements by a circular array consisting of 18 wave gauges in a large wave tank, directional spectra of swell in deep water are systematically investigated with maximum likelihood method. It is shown that the directional spreading of swell, qualitatively similar to that of developing wind wave which is narrowest in the region of Peak frequency and bxoadens with increasing or decreasing frequency, can be effectively described by cos2s(θ/2) introduced by Longuet-Higgins et al. (1963,Ocean Wave Spectra, 111~136). It is intriguing that bimodal distribution found in our experiments appers at the forward face instead of the rear face of a frequency spectrum in the cases of nonlinearity being very weak. Parameterized by nonlinearity, formulations which can be applied to swell as well as wind wave are proposed. It is concluded that nonlinear interaction plays a central role in controlling the development of directional angular spreading even for the swell.展开更多
A study was carried out to find the variation in wave characteristics along the eastern Arabian Sea and the influence of swells in the nearshore waves at 3 locations during summer monsoon in 2010. Percentage of swells...A study was carried out to find the variation in wave characteristics along the eastern Arabian Sea and the influence of swells in the nearshore waves at 3 locations during summer monsoon in 2010. Percentage of swells in the measured waves was 75% to 79% at the locations with higher percentage of swells in the northern portion of Arabian Sea com-pared to that at the southern side. The significant wave height up to 4.7 m and maximum wave height up to 7.4 m was observed. The wave height was increasing from south to north with the average significant wave height at the northern location 20% more than that at the southern location due to the increase in the swell height. Waves having spectral peak period less than 6 s were not present during the summer monsoon period. There was no change in the average value of wave statistical parameters for data collected at 1/2, 3, 6, 12 and 24 h interval.展开更多
In this study,typhoon waves generated during three typhoons(Damrey(1210),Fung-wong(1416),and Chan-hom(1509))in the Yellow Sea and East China Sea were simulated in a simulating waves nearshore(SWAN)model,and the wind f...In this study,typhoon waves generated during three typhoons(Damrey(1210),Fung-wong(1416),and Chan-hom(1509))in the Yellow Sea and East China Sea were simulated in a simulating waves nearshore(SWAN)model,and the wind forcing was constructed by combining reanalyzed wind data with a Holland typhoon wind model.Various parameters,such as the Holland fitting parameter(B)and the maximum wind radius?,were investigated in sensitivity experiments in the Holland model that affect the wind field construction.Six different formulations were considered and the parameters determined by comparing the simulated wind results with in-situ wind measurements.The key factors affecting wave growth and dissipation processes from deep to shallow waters were studied,including wind input,whitecapping,and bottom friction.Comparison with in-situ wave measurements suggested that the KOMEN scheme(wind input exponential growth and whitecapping energy dissipation)and the JONSWAP scheme(dissipation of bottom friction)resulted in good reproduction of the significant wave height of typhoon waves.A preliminary analysis of the wave characteristics in terms of wind-sea and swell wave revealed that swell waves dominated with the distance of R to the eye of the typhoon,while wind-sea prevailed in the outer region up to six to eight times the R values despite a clear misalignment between wind and waves.The results support the hypothesis that nonlinear wave-wave interactions may play a key role in the formation of wave characteristics.展开更多
In this study, the simulating waves nearshore (SWAN) model with a locally refined curvilinear grid system was constructed to simulate waves in Jervis Bay and the neighbouring ocean of Australia, with the aim of examin...In this study, the simulating waves nearshore (SWAN) model with a locally refined curvilinear grid system was constructed to simulate waves in Jervis Bay and the neighbouring ocean of Australia, with the aim of examining the wave characteristics in an area with special topography and practical importance. This model was verified by field observations from buoys and acoustic Doppler profilers (ADPs). The model precisions were validated for both wind-generated waves and open-ocean swells. We present an approach with which to convert ADP-observed current data from near the bottom into the significant wave height. Our approach is deduced from the Fourier transform technique and the linear wave theory. The results illustrate that the location of the bay entrance is important because it allows the swells in the dominant direction to propagate into the bay despite the narrowness of the bay entrance. The wave period T p is also strongly related to the wave direction in the semi-enclosed bay. The Tp is great enough along the entire propagating direction from the bay entrance to the top of the bay, and the largest Tp appears along the north-west coast, which is the end tip of the swells’ propagation.展开更多
基金The National Basic Research Program of China under contract No.2012CB957803
文摘Utilizing the 45 a European Centre for Medium-Range Weather Forecasts (ECMWF) reanalysis wave da- ta (ERA-40), the long-term trend of the sea surface wind speed and (wind wave, swell, mixed wave) wave height in the global ocean at grid point 1.5°× 1.5° during the last 44 a is analyzed. It is discovered that a ma- jority of global ocean swell wave height exhibits a significant linear increasing trend (2-8 cm/decade), the distribution of annual linear trend of the significant wave height (SWH) has good consistency with that of the swell wave height. The sea surface wind speed shows an annually linear increasing trend mainly con- centrated in the most waters of Southern Hemisphere westerlies, high latitude of the North Pacific, Indian Ocean north of 30°S, the waters near the western equatorial Pacific and low latitudes of the Atlantic waters, and the annually linear decreasing mainly in central and eastern equator of the Pacific, Juan. Fernandez Archipelago, the waters near South Georgia Island in the Atlantic waters. The linear variational distribution characteristic of the wind wave height is similar to that of the sea surface wind speed. Another find is that the swell is dominant in the mixed wave, the swell index in the central ocean is generally greater than that in the offshore, and the swell index in the eastern ocean coast is greater than that in the western ocean inshore, and in year-round hemisphere westerlies the swell index is relatively low.
基金the National Natural Science Foundation of China (Nos. 40830959 and 40921004)the Ministry of Science and Technology of China (No. 2011BAC03B01)
文摘The existence of three well-defined tongue-shaped zones of swell dominance,termed as 'swell pools',in the Pacific,the Atlantic and the Indian Oceans,was reported by Chen et al.(2002)using satellite data.In this paper,the ECMWF Re-analyses wind wave data,including wind speed,significant wave height,averaged wave period and direction,are applied to verify the existence of these swell pools.The swell indices calculated from wave height,wave age and correlation coefficient are used to identify swell events.The wave age swell index can be more appropriately related to physical processes compared to the other two swell indices.Based on the ECMWF data the swell pools in the Pacific and the Atlantic Oceans are confirmed,but the expected swell pool in the Indian Ocean is not pronounced.The seasonal variations of global and hemispherical swell indices are investigated,and the argument that swells in the pools seemed to originate mostly from the winter hemisphere is supported by the seasonal variation of the averaged wave direction.The northward bending of the swell pools in the Pacific and the Atlantic Oceans in summer is not revealed by the ECMWF data.The swell pool in the Indian Ocean and the summer northward bending of the swell pools in the Pacific and the Atlan-tic Oceans need to be further verified by other datasets.
基金supported by the National Key R&D Program of China (No. 2017YFC1404700) the National Natural Science Foundation of China (No. 41806010)+2 种基金 Laboratory for Regional Oceanography and Numerical Modeling,Qingdao National Laboratory for Marine Science and Technology (No. 2019A03) the Discipline Layout Project for Basic Research of Shenzhen Science and Technology Innovation Committee (No. 20170418) the Guangdong Special Fund Program for Marine Economy Development (No. GDME-2018E001)
文摘The wind-sea and swell climates in the China Seas are investigated by using the 27-yr Integrated Ocean Waves for Geophysical and other Applications(IOWAGA)hindcast data.A comparison is made between the significant wave height from the IOWAGA hindcasts and that from a jointly calibrated altimetry dataset,showing the good performance of the IOWAGA hindcasts in the China Seas.A simple but practical method of diagnosing whether the sea state is wind-sea-dominant or swell-dominant is proposed based on spectral partitioning.Different from the characteristics of wind-seas and swells in the open ocean,the wave fields in the enclosed seas such as the China Seas are predominated by wind-sea events in respect of both frequencies of occurrences and energy weights,due to the island sheltering and limited fetches.The energy weights of wind-seas in a given location is usually more significant than the occurrence probability of wind-sea-dominated events,as the wave energy is higher in the wind-sea events than in the swell events on average and extreme wave heights are mostly related to wind-seas.The most energetic swells in the China Seas(and other enclosed seas)are‘local swells’,having just propagated out of their generation areas.However,the swells coming from the West Pacific also play an important role in the wave climate of the China Seas,which can only be revealed by partitioning different swell systems in the wave spectra as the energy of them is significantly less than the‘local swells’.
基金supported by the Natural Environment Research Council as part of a PhD studentship(Grant No.EGF406)
文摘This paper describes an investigation of the generation of desired sea states in a numerical wave model. Bimodal sea states containing energetic swell components can be coastal hazards along coastlines exposed to large oceanic fetches. Investigating the effects of long-period bimodal seas requires large computational domains and increased running time to ensure the development of the desired sea state. Long computational runs can cause mass stability issues due to the Stokes drift and wave reflection, which in turn affect results through the variation of the water level. A numerical wave flume, NEWRANS, was used to investigate two wave generation methods: the wave paddle method, allowing for a smaller domain; and the internal mass source function method, providing an open boundary allowing reflected waves to leave the domain. The two wave generation methods were validated against experimental data by comparing the wave generation accuracy and the variance of mass in the model during simulations. Results show that the wave paddle method not only accurately generates the desired sea state but also provides a more stable simulation, in which mass fluctuation has less of an effect on the water depth during the long-duration simulations. As a result, it is suggested that the wave paddle method with active wave absorption is preferable to the internal wave maker option when investigating intermediate-depth long-period bimodal seas for long-duration simulations.
基金The National Basic Research Programof China under contract Nos 2005CB422302,2005CB422307 and 2007CB411806the Nation-al Natural Science Foundation of China under contract No. 40490263
文摘There exists a tongue-shaped swell-dominance pool known as Swell Pool(SP) in the Eastern Pacific region.The monthly-mean wave transports(WT) for each month of 2000 is computed using the wave products of ECMWF reanalysis data.By comparing the 2000 monthly-mean WT and monthly-mean wind field from QUICKSCAT,large differences are found between the wave transport direction and the wind direction over the Eastern Pacific.This may serve as an evidence for the existence of the SP in this region.The work done in this study indicates that the sources of swell in the Tropical Eastern Pacific(TEP) are in the westerly regions of the Southern and Northern Pacific.
基金financially supported by the Public Science and Technology Research Funds Projects of Ocean (No. 201505007)the National Natural Science Foundation of China (NSFC) (No. 41276015)+2 种基金the Joint Project for the National Oceanographic Center by the NSFC and Shandong Government (No. U1406401)the Doctoral Fund of Ministry of Education of China (No. 20120132110004)the Hebei Agricultural University research project for talented scholars (No. YJ201835)
文摘Based on the simulation with SWAN wave model and data of ERA-Interim from 1979 to 2016, how the waves propagate globally and why swell pools distribute in the eastern ocean were investigated in this study. The simulation results show that waves from North Pacific and North Atlantic mainly propagate southeastward or southward and swells generated in Southern Ocean spread northeastward. The waves from high latitude regions spread along the east coast and encounter in the tropical Pacific and Atlantic to form swell fronts around equator and then turn eastward. As the weak wind field with numerous swell inflows, swell pools are gener- ally located on the eastern side of the ocean basin, where the swell index S are greater than 0.9 calculated using ERA-20C data for the period of 1981 2010. Another remarkable feature is that swell pools move southward and split into two parts in winter, while they move northward and merge together in summer.
文摘From measurements by a circular array consisting of 18 wave gauges in a large wave tank, directional spectra of swell in deep water are systematically investigated with maximum likelihood method. It is shown that the directional spreading of swell, qualitatively similar to that of developing wind wave which is narrowest in the region of Peak frequency and bxoadens with increasing or decreasing frequency, can be effectively described by cos2s(θ/2) introduced by Longuet-Higgins et al. (1963,Ocean Wave Spectra, 111~136). It is intriguing that bimodal distribution found in our experiments appers at the forward face instead of the rear face of a frequency spectrum in the cases of nonlinearity being very weak. Parameterized by nonlinearity, formulations which can be applied to swell as well as wind wave are proposed. It is concluded that nonlinear interaction plays a central role in controlling the development of directional angular spreading even for the swell.
文摘A study was carried out to find the variation in wave characteristics along the eastern Arabian Sea and the influence of swells in the nearshore waves at 3 locations during summer monsoon in 2010. Percentage of swells in the measured waves was 75% to 79% at the locations with higher percentage of swells in the northern portion of Arabian Sea com-pared to that at the southern side. The significant wave height up to 4.7 m and maximum wave height up to 7.4 m was observed. The wave height was increasing from south to north with the average significant wave height at the northern location 20% more than that at the southern location due to the increase in the swell height. Waves having spectral peak period less than 6 s were not present during the summer monsoon period. There was no change in the average value of wave statistical parameters for data collected at 1/2, 3, 6, 12 and 24 h interval.
基金Supported by the National Natural Science Foundation of China(Nos.U1706216,41606024,41506023)the National Key Research and Development Program of China(Nos.2016YFC1402000,2018YFC1407003)+2 种基金the CAS Strategic Priority Project(No.XDA19060202)the NSFC Innovative Group Grant Project(No.41421005)the NSFC-Shandong Joint Fund for Marine Science Research Centers Grant(No.U1406402)
文摘In this study,typhoon waves generated during three typhoons(Damrey(1210),Fung-wong(1416),and Chan-hom(1509))in the Yellow Sea and East China Sea were simulated in a simulating waves nearshore(SWAN)model,and the wind forcing was constructed by combining reanalyzed wind data with a Holland typhoon wind model.Various parameters,such as the Holland fitting parameter(B)and the maximum wind radius?,were investigated in sensitivity experiments in the Holland model that affect the wind field construction.Six different formulations were considered and the parameters determined by comparing the simulated wind results with in-situ wind measurements.The key factors affecting wave growth and dissipation processes from deep to shallow waters were studied,including wind input,whitecapping,and bottom friction.Comparison with in-situ wave measurements suggested that the KOMEN scheme(wind input exponential growth and whitecapping energy dissipation)and the JONSWAP scheme(dissipation of bottom friction)resulted in good reproduction of the significant wave height of typhoon waves.A preliminary analysis of the wave characteristics in terms of wind-sea and swell wave revealed that swell waves dominated with the distance of R to the eye of the typhoon,while wind-sea prevailed in the outer region up to six to eight times the R values despite a clear misalignment between wind and waves.The results support the hypothesis that nonlinear wave-wave interactions may play a key role in the formation of wave characteristics.
基金Supported by the National Key R&D Program of China(No.2017YFC1404200)the National Natural Science Foundation of China(No.41406046)+4 种基金the Fundamental Research Funds for National Public Research Institutes of China(No.2014T01)the Overseas Students Science and Technology Activities Project Merit Funding and the ChinaKorea Cooperation Project for Nuclear Safety through the China-Korea Joint Ocean Research Centre(CKJORC)the National Program on Global Change and Air-Sea Interaction(No.GASI-IPOVAI-05)the International Cooperative Project on the China-Australia Research Centre for Maritime Engineering of Ministry of Science and Technology(No.2016YFE0101400)the Qingdao National Laboratory for Marine Science and Technology(Nos.2015ASTP,2016ASKJ16,2015ASKJ01)
文摘In this study, the simulating waves nearshore (SWAN) model with a locally refined curvilinear grid system was constructed to simulate waves in Jervis Bay and the neighbouring ocean of Australia, with the aim of examining the wave characteristics in an area with special topography and practical importance. This model was verified by field observations from buoys and acoustic Doppler profilers (ADPs). The model precisions were validated for both wind-generated waves and open-ocean swells. We present an approach with which to convert ADP-observed current data from near the bottom into the significant wave height. Our approach is deduced from the Fourier transform technique and the linear wave theory. The results illustrate that the location of the bay entrance is important because it allows the swells in the dominant direction to propagate into the bay despite the narrowness of the bay entrance. The wave period T p is also strongly related to the wave direction in the semi-enclosed bay. The Tp is great enough along the entire propagating direction from the bay entrance to the top of the bay, and the largest Tp appears along the north-west coast, which is the end tip of the swells’ propagation.