Stationary even periodic solutions of the Swift-Hohenberg equation areanalyzed for the critical parameter k = 1, and it is proved that there exist periodic solutionshaving the same energy as the constant solution u = ...Stationary even periodic solutions of the Swift-Hohenberg equation areanalyzed for the critical parameter k = 1, and it is proved that there exist periodic solutionshaving the same energy as the constant solution u = 0. For k ≤ 0, some qualitative properties ofthe solutions are also proved.展开更多
In this paper, we study an ODE of the form b0u(4)+b1u′′+b2u+b3u3+b4u5=0, ′= d/dz' , which includes, as a special case, the stationary case of the cubic-quintic Swift-Hohenberg equation. Based on Nevanlinna t...In this paper, we study an ODE of the form b0u(4)+b1u′′+b2u+b3u3+b4u5=0, ′= d/dz' , which includes, as a special case, the stationary case of the cubic-quintic Swift-Hohenberg equation. Based on Nevanlinna theory and Painleve analysis, we first show that all its meromorphic solutions are elliptic or degenerate elliptic. Then we obtain them all explicitly by the method introduced in [7].展开更多
This paper is concerned with the bifurcation of a complex Swift-Hohenberg equation. The attractor bifurcation of the complex Swift-Hohenberg equation on a one- dimensional domain (0, L) is investigated. It is shown ...This paper is concerned with the bifurcation of a complex Swift-Hohenberg equation. The attractor bifurcation of the complex Swift-Hohenberg equation on a one- dimensional domain (0, L) is investigated. It is shown that the n-dimensional complex Swift-Hohenberg equation bifurcates from the trivial solution to an attractor under the Dirichlet boundary condition on a general domain and under a periodic boundary condition when the bifurcation parameter crosses some critical values. The stability property of the bifurcation attractor is analyzed.展开更多
In this paper, we performed an investigation of the dissipative solitons of the two-dimensional (2D) Complex Swift-Hohenberg equation (CSHE). Stationary to pulsating soliton bifurcation analysis of the 2D CSHE is disp...In this paper, we performed an investigation of the dissipative solitons of the two-dimensional (2D) Complex Swift-Hohenberg equation (CSHE). Stationary to pulsating soliton bifurcation analysis of the 2D CSHE is displayed. The approach is based on the semi-analytical method of collective coordinate approach. This method is constructed on a reduction from an infinite-dimensional dynamical dissipative system to a finite-dimensional model. The reduced model helps to obtain approximately the boundaries between the stationary and pulsating solutions. We analyzed the dynamics and characteristics of the pulsating solitons. Then we obtained the bifurcation diagram for a definite range of the saturation of the Kerr nonlinearity values. This diagram reveals the effect of the saturation of the Kerr nonlinearity on the period pulsations. The results show that when the parameter of the saturation of the Kerr nonlinearity increases, one period pulsating soliton solution bifurcates to double period pulsations.展开更多
Stationary even single bump periodic solutions of the Swift Hohenberg equation are analyzed. The coefficient k in the equation is found to be a critical parameter. It is proved if 0<k<1 , there exist pe...Stationary even single bump periodic solutions of the Swift Hohenberg equation are analyzed. The coefficient k in the equation is found to be a critical parameter. It is proved if 0<k<1 , there exist periodic solutions having the same energy as the constant solution u=0; if 1<k<32 , there exist periodic solutions having the same energy as the stable states u=±k-1. The proof of the above results is based on a shooting technique, together with a linearization method and a scaling argument.展开更多
In this paper,we present an efficient time-splitting Fourier spectral method for the quintic complex Swift-Hohenberg equation.Using the Strang time-splitting technique,we split the equation into linear part and nonlin...In this paper,we present an efficient time-splitting Fourier spectral method for the quintic complex Swift-Hohenberg equation.Using the Strang time-splitting technique,we split the equation into linear part and nonlinear part.The linear part is solved with Fourier Pseudospectral method;the nonlinear part is solved analytically.We show that the method is easy to be applied and second-order in time and spectrally accurate in space.We apply the method to investigate soliton propagation,soliton interaction,and generation of stable moving pulses in one dimension and stable vortex solitons in two dimensions.展开更多
The main purpose of this work is to contrast and analyze a large timestepping numerical method for the Swift-Hohenberg(SH)equation.This model requires very large time simulation to reach steady state,so developing a l...The main purpose of this work is to contrast and analyze a large timestepping numerical method for the Swift-Hohenberg(SH)equation.This model requires very large time simulation to reach steady state,so developing a large time step algorithm becomes necessary to improve the computational efficiency.In this paper,a semi-implicit Euler schemes in time is adopted.An extra artificial term is added to the discretized system in order to preserve the energy stability unconditionally.The stability property is proved rigorously based on an energy approach.Numerical experiments are used to demonstrate the effectiveness of the large time-stepping approaches by comparing with the classical scheme.展开更多
In this paper, the normal form analysis of quadratic-cubic Swift-Hohenberg equation with a dissipative term is investigated by using the multiple-scale method. In addition, we obtain Hamiltonian-Hopf bifurcations of t...In this paper, the normal form analysis of quadratic-cubic Swift-Hohenberg equation with a dissipative term is investigated by using the multiple-scale method. In addition, we obtain Hamiltonian-Hopf bifurcations of two equilib- ria and homoclinic snaking bifurcations of one-peak and two-peak homoclinic solutions by numerical simulations.展开更多
Homoclinic snake always refers to the branches of homoclinic orbits near a heteroclinic cycle connecting a hyperbolic or non-hyperbolic equilibrium and a periodic orbit in a reversible variational system. In this pape...Homoclinic snake always refers to the branches of homoclinic orbits near a heteroclinic cycle connecting a hyperbolic or non-hyperbolic equilibrium and a periodic orbit in a reversible variational system. In this paper, the normal form of a Swift-Hohenberg equation with two different symmetry-breaking terms (non-reversible term and non-k-symmetry term) are investigated by using multiple scale method, and their bifurcation diagrams are initially studied by numerical simulations. Typically, we predict numerically the existence of so- called round-snakes and round-isolas upon particular two symmetric-breaking perturbations.展开更多
We consider a generalized form of the porous medium equation where the porosity ϕis a function of time t: ϕ=ϕ(x,t): ∂(ϕS)∂t−∇⋅(k(S)∇S)=Q(S).In many works, the porosity ϕis either assumed to be independent of (or to de...We consider a generalized form of the porous medium equation where the porosity ϕis a function of time t: ϕ=ϕ(x,t): ∂(ϕS)∂t−∇⋅(k(S)∇S)=Q(S).In many works, the porosity ϕis either assumed to be independent of (or to depend very little of) the time variable t. In this work, we want to study the case where it does depend on t(and xas well). For this purpose, we make a change of unknown function V=ϕSin order to obtain a saturation-like (advection-diffusion) equation. A priori estimates and regularity results are established for the new equation based in part on what is known from the saturation equation, when ϕis independent of the time t. These results are then extended to the full saturation equation with time-dependent porosity ϕ=ϕ(x,t). In this analysis, we make explicitly the dependence of the various constants in the estimates on the porosity ϕby the introduced transport vector w, through the change of unknown function. Also we do not assume zero-flux boundary, but we carry the analysis for the case Q≡0.展开更多
Three modified sine-Hilbert(sH)-type equations, i.e., the modified sH equation, the modified damped sH equation, and the modified nonlinear dissipative system, are proposed, and their bilinear forms are provided.Based...Three modified sine-Hilbert(sH)-type equations, i.e., the modified sH equation, the modified damped sH equation, and the modified nonlinear dissipative system, are proposed, and their bilinear forms are provided.Based on these bilinear equations, some exact solutions to the three modified equations are derived.展开更多
In this study, the Bernstein collocation method has been expanded to Stancu collocation method for numerical solution of the charged particle motion for certain configurations of oscillating magnetic fields modelled b...In this study, the Bernstein collocation method has been expanded to Stancu collocation method for numerical solution of the charged particle motion for certain configurations of oscillating magnetic fields modelled by a class of linear integro-differential equations. As the method has been improved, the Stancu polynomials that are generalization of the Bernstein polynomials have been used. The method has been tested on a physical problem how the method can be applied. Moreover, numerical results of the method have been compared with the numerical results of the other methods to indicate the efficiency of the method.展开更多
In this study,new particle and energy balance equations have been developed to predict the electron temperature and density in locally bounded plasmas.Classical particle and energy balance equations assume that all pl...In this study,new particle and energy balance equations have been developed to predict the electron temperature and density in locally bounded plasmas.Classical particle and energy balance equations assume that all plasma within a reactor is completely confined only by the reactor walls.However,in industrial plasma reactors for semiconductor manufacturing,the plasma is partially confined by internal reactor structures.We predict the effect of the open boundary area(A′_(L,eff))and ion escape velocity(u_(i))on electron temperature and density by developing new particle and energy balance equations.Theoretically,we found a low ion escape velocity(u_(i)/u_(B)≈0.2)and high open boundary area(A′_(L,eff)/A_(T,eff)≈0.6)to result in an approximately 38%increase in electron density and an 8%decrease in electron temperature compared to values in a fully bounded reactor.Additionally,we suggest that the velocity of ions passing through the open boundary should exceedω_(pi)λ_(De)under the condition E^(2)_(0)?(Φ/λ_(De))^(2).展开更多
By the modifying loss function MSE and training area of physics-informed neural networks(PINNs),we propose a neural networks model,namely prior-information PINNs(PIPINNs).We demonstrate the advantages of PIPINNs by si...By the modifying loss function MSE and training area of physics-informed neural networks(PINNs),we propose a neural networks model,namely prior-information PINNs(PIPINNs).We demonstrate the advantages of PIPINNs by simulating Ai-and Bi-soliton solutions of the cylindrical Korteweg-de Vries(cKdV)equation.展开更多
In this paper, the matrix Riccati equation is considered. There is no general way for solving the matrix Riccati equation despite the many fields to which it applies. While scalar Riccati equation has been studied tho...In this paper, the matrix Riccati equation is considered. There is no general way for solving the matrix Riccati equation despite the many fields to which it applies. While scalar Riccati equation has been studied thoroughly, matrix Riccati equation of which scalar Riccati equations is a particular case, is much less investigated. This article proposes a change of variable that allows to find explicit solution of the Matrix Riccati equation. We then apply this solution to Optimal Control.展开更多
This article describes the solution procedure of the fractional Pade-Ⅱ equation and generalized Zakharov equation(GSEs)using the sine-cosine method.Pade-Ⅱ is an important nonlinear wave equation modeling unidirectio...This article describes the solution procedure of the fractional Pade-Ⅱ equation and generalized Zakharov equation(GSEs)using the sine-cosine method.Pade-Ⅱ is an important nonlinear wave equation modeling unidirectional propagation of long-wave in dispersive media and GSEs are used to model the interaction between one-dimensional high,and low-frequency waves.Classes of trigonometric and hyperbolic function solutions in fractional calculus are discussed.Graphical simulations of the numerical solutions are flaunted by MATLAB.展开更多
This paper is devoted to understanding the stability of perturbations around the hydrostatic equilibrium of the Boussinesq system in order to gain insight into certain atmospheric and oceanographic phenomena.The Bouss...This paper is devoted to understanding the stability of perturbations around the hydrostatic equilibrium of the Boussinesq system in order to gain insight into certain atmospheric and oceanographic phenomena.The Boussinesq system focused on here is anisotropic,and involves only horizontal dissipation and thermal damping.In the 2D case R^(2),due to the lack of vertical dissipation,the stability and large-time behavior problems have remained open in a Sobolev setting.For the spatial domain T×R,this paper solves the stability problem and gives the precise large-time behavior of the perturbation.By decomposing the velocity u and temperatureθinto the horizontal average(ū,θ)and the corresponding oscillation(ū,θ),we can derive the global stability in H~2 and the exponential decay of(ū,θ)to zero in H^(1).Moreover,we also obtain that(ū_(2),θ)decays exponentially to zero in H^(1),and thatū_(1)decays exponentially toū_(1)(∞)in H^(1)as well;this reflects a strongly stratified phenomenon of buoyancy-driven fluids.In addition,we establish the global stability in H^(3)for the 3D case R^(3).展开更多
In the articles “Newtons Law of Universal Gravitation Explained by the Theory of Informatons” and “The Gravitational Interaction between Moving Mass Particles Explained by the Theory of Informatons” the gravitatio...In the articles “Newtons Law of Universal Gravitation Explained by the Theory of Informatons” and “The Gravitational Interaction between Moving Mass Particles Explained by the Theory of Informatons” the gravitational interaction has been explained by the hypothesis that information carried by informatons is the substance of gravitational fields, i.e. the medium that the interaction in question makes possible. From the idea that “information carried by informatons” is its substance, it has been deduced that—on the macroscopic level—a gravitational field manifests itself as a dual entity, always having a field- and an induction component (Egand Bg) simultaneously created by their common sources. In this article we will mathematically deduce the Maxwell-Heaviside equations from the kinematics of the informatons. These relations describe on the macroscopic level how a gravitational field (Eg, Bg) is generated by whether or not moving masses and how spatial and temporal changes of Egand Bgare related. We show that there is no causal link between Egand Bg.展开更多
In this article, we study the smoothing effect of the Cauchy problem for the spatially homogeneous non-cutoff Boltzmann equation for hard potentials. It has long been suspected that the non-cutoff Boltzmann equation e...In this article, we study the smoothing effect of the Cauchy problem for the spatially homogeneous non-cutoff Boltzmann equation for hard potentials. It has long been suspected that the non-cutoff Boltzmann equation enjoys similar regularity properties as to whose of the fractional heat equation. We prove that any solution with mild regularity will become smooth in Gevrey class at positive time, with a sharp Gevrey index, depending on the angular singularity. Our proof relies on the elementary L^(2) weighted estimates.展开更多
The COVID-19 outbreak has significantly disrupted the lives of individuals worldwide.Following the lifting of COVID-19 interventions,there is a heightened risk of future outbreaks from other circulating respiratory in...The COVID-19 outbreak has significantly disrupted the lives of individuals worldwide.Following the lifting of COVID-19 interventions,there is a heightened risk of future outbreaks from other circulating respiratory infections,such as influenza-like illness(ILI).Accurate prediction models for ILI cases are crucial in enabling governments to implement necessary measures and persuade individuals to adopt personal precautions against the disease.This paper aims to provide a forecasting model for ILI cases with actual cases.We propose a specific model utilizing the partial differential equation(PDE)that will be developed and validated using real-world data obtained from the Chinese National Influenza Center.Our model combines the effects of transboundary spread among regions in China mainland and human activities’impact on ILI transmission dynamics.The simulated results demonstrate that our model achieves excellent predictive performance.Additionally,relevant factors influencing the dissemination are further examined in our analysis.Furthermore,we investigate the effectiveness of travel restrictions on ILI cases.Results can be used to utilize to mitigate the spread of disease.展开更多
文摘Stationary even periodic solutions of the Swift-Hohenberg equation areanalyzed for the critical parameter k = 1, and it is proved that there exist periodic solutionshaving the same energy as the constant solution u = 0. For k ≤ 0, some qualitative properties ofthe solutions are also proved.
基金partially supported by a graduate studentship of HKU and RGC grant HKU 703807P
文摘In this paper, we study an ODE of the form b0u(4)+b1u′′+b2u+b3u3+b4u5=0, ′= d/dz' , which includes, as a special case, the stationary case of the cubic-quintic Swift-Hohenberg equation. Based on Nevanlinna theory and Painleve analysis, we first show that all its meromorphic solutions are elliptic or degenerate elliptic. Then we obtain them all explicitly by the method introduced in [7].
基金Project supported by the National Natural Science Foundation of China (No. 10871097)the Innovation Project for Graduate Education of Jiangsu Province (No. CX09B-296Z)
文摘This paper is concerned with the bifurcation of a complex Swift-Hohenberg equation. The attractor bifurcation of the complex Swift-Hohenberg equation on a one- dimensional domain (0, L) is investigated. It is shown that the n-dimensional complex Swift-Hohenberg equation bifurcates from the trivial solution to an attractor under the Dirichlet boundary condition on a general domain and under a periodic boundary condition when the bifurcation parameter crosses some critical values. The stability property of the bifurcation attractor is analyzed.
文摘In this paper, we performed an investigation of the dissipative solitons of the two-dimensional (2D) Complex Swift-Hohenberg equation (CSHE). Stationary to pulsating soliton bifurcation analysis of the 2D CSHE is displayed. The approach is based on the semi-analytical method of collective coordinate approach. This method is constructed on a reduction from an infinite-dimensional dynamical dissipative system to a finite-dimensional model. The reduced model helps to obtain approximately the boundaries between the stationary and pulsating solutions. We analyzed the dynamics and characteristics of the pulsating solitons. Then we obtained the bifurcation diagram for a definite range of the saturation of the Kerr nonlinearity values. This diagram reveals the effect of the saturation of the Kerr nonlinearity on the period pulsations. The results show that when the parameter of the saturation of the Kerr nonlinearity increases, one period pulsating soliton solution bifurcates to double period pulsations.
基金National Natural Science Foundation of China (1 0 0 71 0 67)
文摘Stationary even single bump periodic solutions of the Swift Hohenberg equation are analyzed. The coefficient k in the equation is found to be a critical parameter. It is proved if 0<k<1 , there exist periodic solutions having the same energy as the constant solution u=0; if 1<k<32 , there exist periodic solutions having the same energy as the stable states u=±k-1. The proof of the above results is based on a shooting technique, together with a linearization method and a scaling argument.
基金supported in part by the Ministry of Education of Singapore grant No.R-146-000-120-112the National Natural Science Foundation of China grant No.10901134.
文摘In this paper,we present an efficient time-splitting Fourier spectral method for the quintic complex Swift-Hohenberg equation.Using the Strang time-splitting technique,we split the equation into linear part and nonlinear part.The linear part is solved with Fourier Pseudospectral method;the nonlinear part is solved analytically.We show that the method is easy to be applied and second-order in time and spectrally accurate in space.We apply the method to investigate soliton propagation,soliton interaction,and generation of stable moving pulses in one dimension and stable vortex solitons in two dimensions.
基金supported by the Fundamental Research Funds for the CentralUniversities andNationalNSF of China under grantNos.11271048,1130021 and 11571054.
文摘The main purpose of this work is to contrast and analyze a large timestepping numerical method for the Swift-Hohenberg(SH)equation.This model requires very large time simulation to reach steady state,so developing a large time step algorithm becomes necessary to improve the computational efficiency.In this paper,a semi-implicit Euler schemes in time is adopted.An extra artificial term is added to the discretized system in order to preserve the energy stability unconditionally.The stability property is proved rigorously based on an energy approach.Numerical experiments are used to demonstrate the effectiveness of the large time-stepping approaches by comparing with the classical scheme.
基金supported by the National NSF of China(Nos.11671114 and 11571088)Program for Excellent Young Teachers in HNU(HNUEYT2013)
文摘In this paper, the normal form analysis of quadratic-cubic Swift-Hohenberg equation with a dissipative term is investigated by using the multiple-scale method. In addition, we obtain Hamiltonian-Hopf bifurcations of two equilib- ria and homoclinic snaking bifurcations of one-peak and two-peak homoclinic solutions by numerical simulations.
基金supported by the National NSF of China(No.11671114)
文摘Homoclinic snake always refers to the branches of homoclinic orbits near a heteroclinic cycle connecting a hyperbolic or non-hyperbolic equilibrium and a periodic orbit in a reversible variational system. In this paper, the normal form of a Swift-Hohenberg equation with two different symmetry-breaking terms (non-reversible term and non-k-symmetry term) are investigated by using multiple scale method, and their bifurcation diagrams are initially studied by numerical simulations. Typically, we predict numerically the existence of so- called round-snakes and round-isolas upon particular two symmetric-breaking perturbations.
文摘We consider a generalized form of the porous medium equation where the porosity ϕis a function of time t: ϕ=ϕ(x,t): ∂(ϕS)∂t−∇⋅(k(S)∇S)=Q(S).In many works, the porosity ϕis either assumed to be independent of (or to depend very little of) the time variable t. In this work, we want to study the case where it does depend on t(and xas well). For this purpose, we make a change of unknown function V=ϕSin order to obtain a saturation-like (advection-diffusion) equation. A priori estimates and regularity results are established for the new equation based in part on what is known from the saturation equation, when ϕis independent of the time t. These results are then extended to the full saturation equation with time-dependent porosity ϕ=ϕ(x,t). In this analysis, we make explicitly the dependence of the various constants in the estimates on the porosity ϕby the introduced transport vector w, through the change of unknown function. Also we do not assume zero-flux boundary, but we carry the analysis for the case Q≡0.
基金supported by the National Natural Science Foundation of China (Grant Nos. 11931017 and 12071447)。
文摘Three modified sine-Hilbert(sH)-type equations, i.e., the modified sH equation, the modified damped sH equation, and the modified nonlinear dissipative system, are proposed, and their bilinear forms are provided.Based on these bilinear equations, some exact solutions to the three modified equations are derived.
文摘In this study, the Bernstein collocation method has been expanded to Stancu collocation method for numerical solution of the charged particle motion for certain configurations of oscillating magnetic fields modelled by a class of linear integro-differential equations. As the method has been improved, the Stancu polynomials that are generalization of the Bernstein polynomials have been used. The method has been tested on a physical problem how the method can be applied. Moreover, numerical results of the method have been compared with the numerical results of the other methods to indicate the efficiency of the method.
文摘In this study,new particle and energy balance equations have been developed to predict the electron temperature and density in locally bounded plasmas.Classical particle and energy balance equations assume that all plasma within a reactor is completely confined only by the reactor walls.However,in industrial plasma reactors for semiconductor manufacturing,the plasma is partially confined by internal reactor structures.We predict the effect of the open boundary area(A′_(L,eff))and ion escape velocity(u_(i))on electron temperature and density by developing new particle and energy balance equations.Theoretically,we found a low ion escape velocity(u_(i)/u_(B)≈0.2)and high open boundary area(A′_(L,eff)/A_(T,eff)≈0.6)to result in an approximately 38%increase in electron density and an 8%decrease in electron temperature compared to values in a fully bounded reactor.Additionally,we suggest that the velocity of ions passing through the open boundary should exceedω_(pi)λ_(De)under the condition E^(2)_(0)?(Φ/λ_(De))^(2).
基金supported by the National Natural Science Foundation of China(Grant Nos.12175111 and 12235007)the K.C.Wong Magna Fund in Ningbo University。
文摘By the modifying loss function MSE and training area of physics-informed neural networks(PINNs),we propose a neural networks model,namely prior-information PINNs(PIPINNs).We demonstrate the advantages of PIPINNs by simulating Ai-and Bi-soliton solutions of the cylindrical Korteweg-de Vries(cKdV)equation.
文摘In this paper, the matrix Riccati equation is considered. There is no general way for solving the matrix Riccati equation despite the many fields to which it applies. While scalar Riccati equation has been studied thoroughly, matrix Riccati equation of which scalar Riccati equations is a particular case, is much less investigated. This article proposes a change of variable that allows to find explicit solution of the Matrix Riccati equation. We then apply this solution to Optimal Control.
文摘This article describes the solution procedure of the fractional Pade-Ⅱ equation and generalized Zakharov equation(GSEs)using the sine-cosine method.Pade-Ⅱ is an important nonlinear wave equation modeling unidirectional propagation of long-wave in dispersive media and GSEs are used to model the interaction between one-dimensional high,and low-frequency waves.Classes of trigonometric and hyperbolic function solutions in fractional calculus are discussed.Graphical simulations of the numerical solutions are flaunted by MATLAB.
基金supported by National Natural Science Foundation of China(12071391,12231016)the Guangdong Basic and Applied Basic Research Foundation(2022A1515010860)。
文摘This paper is devoted to understanding the stability of perturbations around the hydrostatic equilibrium of the Boussinesq system in order to gain insight into certain atmospheric and oceanographic phenomena.The Boussinesq system focused on here is anisotropic,and involves only horizontal dissipation and thermal damping.In the 2D case R^(2),due to the lack of vertical dissipation,the stability and large-time behavior problems have remained open in a Sobolev setting.For the spatial domain T×R,this paper solves the stability problem and gives the precise large-time behavior of the perturbation.By decomposing the velocity u and temperatureθinto the horizontal average(ū,θ)and the corresponding oscillation(ū,θ),we can derive the global stability in H~2 and the exponential decay of(ū,θ)to zero in H^(1).Moreover,we also obtain that(ū_(2),θ)decays exponentially to zero in H^(1),and thatū_(1)decays exponentially toū_(1)(∞)in H^(1)as well;this reflects a strongly stratified phenomenon of buoyancy-driven fluids.In addition,we establish the global stability in H^(3)for the 3D case R^(3).
文摘In the articles “Newtons Law of Universal Gravitation Explained by the Theory of Informatons” and “The Gravitational Interaction between Moving Mass Particles Explained by the Theory of Informatons” the gravitational interaction has been explained by the hypothesis that information carried by informatons is the substance of gravitational fields, i.e. the medium that the interaction in question makes possible. From the idea that “information carried by informatons” is its substance, it has been deduced that—on the macroscopic level—a gravitational field manifests itself as a dual entity, always having a field- and an induction component (Egand Bg) simultaneously created by their common sources. In this article we will mathematically deduce the Maxwell-Heaviside equations from the kinematics of the informatons. These relations describe on the macroscopic level how a gravitational field (Eg, Bg) is generated by whether or not moving masses and how spatial and temporal changes of Egand Bgare related. We show that there is no causal link between Egand Bg.
基金supported by the NSFC(12101012)the PhD Scientific Research Start-up Foundation of Anhui Normal University.Zeng’s research was supported by the NSFC(11961160716,11871054,12131017).
文摘In this article, we study the smoothing effect of the Cauchy problem for the spatially homogeneous non-cutoff Boltzmann equation for hard potentials. It has long been suspected that the non-cutoff Boltzmann equation enjoys similar regularity properties as to whose of the fractional heat equation. We prove that any solution with mild regularity will become smooth in Gevrey class at positive time, with a sharp Gevrey index, depending on the angular singularity. Our proof relies on the elementary L^(2) weighted estimates.
基金supported by the National Natural Science Foundation of China(Grant No.62373197)Postgraduate Research&Practice Innovation Program of Jiangsu Province(Grant No.KYCX18_0892).
文摘The COVID-19 outbreak has significantly disrupted the lives of individuals worldwide.Following the lifting of COVID-19 interventions,there is a heightened risk of future outbreaks from other circulating respiratory infections,such as influenza-like illness(ILI).Accurate prediction models for ILI cases are crucial in enabling governments to implement necessary measures and persuade individuals to adopt personal precautions against the disease.This paper aims to provide a forecasting model for ILI cases with actual cases.We propose a specific model utilizing the partial differential equation(PDE)that will be developed and validated using real-world data obtained from the Chinese National Influenza Center.Our model combines the effects of transboundary spread among regions in China mainland and human activities’impact on ILI transmission dynamics.The simulated results demonstrate that our model achieves excellent predictive performance.Additionally,relevant factors influencing the dissemination are further examined in our analysis.Furthermore,we investigate the effectiveness of travel restrictions on ILI cases.Results can be used to utilize to mitigate the spread of disease.