期刊文献+
共找到2篇文章
< 1 >
每页显示 20 50 100
Where is the rudder of a fish?:the mechanism of swimming and control of self-propelled fish school 被引量:14
1
作者 Chuijie Wu Liang Wang 《Acta Mechanica Sinica》 SCIE EI CAS CSCD 2010年第1期45-65,共21页
Numerical simulation and control of self- propelled swimming of two- and three-dimensional biomimetic fish school in a viscous flow are investigated. With a parallel computational fluid dynamics package for the two- a... Numerical simulation and control of self- propelled swimming of two- and three-dimensional biomimetic fish school in a viscous flow are investigated. With a parallel computational fluid dynamics package for the two- and three-dimensional moving boundary problem, which combines the adaptive multi-grid finite volume method and the methods of immersed boundary and volume of fluid, it is found that due to the interactions of vortices in the wakes, without proper control, a fish school swim with a given flap- ping rule can not keep the fixed shape of a queue. In order to understand the secret of fish swimming, a new feedback con- trol strategy of fish motion is proposed for the first time, i,e., the locomotion speed is adjusted by the flapping frequency of the caudal, and the direction of swimming is controlled by the swinging of the head of a fish. Results show that with this feedback control strategy, a fish school can keep the good order of a queue in cruising, turning or swimming around circles. This new control strategy, which separates the speed control and direction control, is important in the construction of biomimetic robot fish, with which it greatly simplifies the control devices of a biomimetic robot fish. 展开更多
关键词 Self-propelled swimming Feedback controlstrategy of fish swimming ~ Direction control - Locomotionspeed control Three-dimensional biomimetic fish
下载PDF
Kinematic Comparison of Forward and Backward Swimming and Maneuvering in a Self-Propelled Sub-Carangiform Robotic Fish 被引量:11
2
作者 Zhengxing Wu Junzhi Yu +1 位作者 Min Tan Jianwei Zhang 《Journal of Bionic Engineering》 SCIE EI CSCD 2014年第2期199-212,共14页
We make a thorough kinematic comparison of forward and backward swimming and maneuvering on a self-propelled robot platform that uses sub-carangifbrm swimming as the primary propulsor. An improved Central Pattern Gene... We make a thorough kinematic comparison of forward and backward swimming and maneuvering on a self-propelled robot platform that uses sub-carangifbrm swimming as the primary propulsor. An improved Central Pattern Generator (CPG) model allowing free adjustment of phase relationship and directional bias is employed to achieve flexible swimming and smooth transition. Considering the characteristics of forward swimming in carangiform fish and backward swimming in anguilliform fish, various backward swimming patterns for the sub-carangiform robotic fish are suitably created by reversing the direction of propagating propulsive waves. Through a combined use of the CPG control and closed-loop swimming direction control strategy, flexible and precise turning maneuvers in both forward and backward swimming are implemented and compared. By contrast with forward swimming, backward swimming requires a higher frequency or an increased lateral displacement to reach the same relative swimming speed. Noticeably, the phase difference shows a greater impact on forward swimming than on backward swimming. Our observations also indicate that the robotic fish achieves a larger turning rate in forward maneuvering than in backward maneuvering, yet these two maneuvers display comparable turning precision. 展开更多
关键词 robotic fish backward swimming Central Pattern Generator (CPG) swimming locomotion control
原文传递
上一页 1 下一页 到第
使用帮助 返回顶部