A new family of converters,high-performance AC/DC power factor correction(PFC) switching converters with one-cycle control technology and active floating-charge technology,was derived and experimentally verified.The t...A new family of converters,high-performance AC/DC power factor correction(PFC) switching converters with one-cycle control technology and active floating-charge technology,was derived and experimentally verified.The topology of a single-phase CCM and DCM Boost-PFC switching converter was also analyzed.Its operating prniciples and control methods were expounded.Based on these,a new type of AC/DC switching converter circuits for PFC combined with one-cycle control technology was presented herein.The proposed AC/DC switching converter significantly helps improve the converter efficiency and its power factor value.展开更多
The discrete iterative map models of peak current-mode (PCM) and valley current-mode (VCM) controlled buck converters, boost converters, and buck-boost converters with ramp compensation are established and their d...The discrete iterative map models of peak current-mode (PCM) and valley current-mode (VCM) controlled buck converters, boost converters, and buck-boost converters with ramp compensation are established and their dynamical behaviours are investigated by using the operation region, parameter space map, bifurcation diagram, and Lyapunov exponent spectrum. The research results indicate that ramp compensation extends the stable operation range of the PCM controlled switching dc-dc converter to D 〉 0.5 and that of the VCM controlled switching dc-dc converter to D 〈 0.5. Compared with PCM controlled switching dc-dc converters with ramp compensation, VCM controlled switching dc-dc converters with ramp compensation exhibit interesting symmetrical dynamics. Experimental results are given to verify the analysis results in this paper.展开更多
An analysis technique of steady state and stability for closed-loop PWM DC/DC switching converters is presented. Using this method, the closed-loop switching converter is transformed into an open-loop system. By means...An analysis technique of steady state and stability for closed-loop PWM DC/DC switching converters is presented. Using this method, the closed-loop switching converter is transformed into an open-loop system. By means of the fact that in steady state, the two boundary values are equal in one switching period. The exponential matrix is evaluated by precise time-domain-integration method, and then the related curve between feedback duty cycle and the input one is obtained. Not only can the steady-state duty cycle be found from the curve, but also the stability and stable domain of the system. Compared with other methods, it features with simplicity and less calculation, and fit for numerical simulation and analysis for closed-loop switching converters. The simulation results of examples indicate the correctness of the presented method.展开更多
The multi-phase implementation in the QR (quasi resonant) ZCS (zero current switching) SC (switched capacitor) bidirectional DC-DC converter structure has been proposed to reduce current ripple, switching loss a...The multi-phase implementation in the QR (quasi resonant) ZCS (zero current switching) SC (switched capacitor) bidirectional DC-DC converter structure has been proposed to reduce current ripple, switching loss and significantly increase the converter efficiency and power density. This approach provides a more precise output voltage to obtain voltage conversion ratios from the double-mode versus half-mode to n-mode versus 1/n mode. This is accomplished by adding a different number of switched-capacitors and power MOSFET switches with a small series connected resonant inductor for forward and reverse schemes. The size and cost can be reduced when the proposed converter has been designed with the coupled inductors. The simulation and experimental results have been used to demonstrate the performance of the two-phase with and without coupled inductor interleaved QR ZCS SC converters for bidirectional power flow control application, and an extending structure for N-phase is mentioned.展开更多
This paper addresses the problem of global practical stabilization of discrete-time switched affine systems via statedependent switching rules.Several attempts have been made to solve this problem via different types ...This paper addresses the problem of global practical stabilization of discrete-time switched affine systems via statedependent switching rules.Several attempts have been made to solve this problem via different types of a common quadratic Lyapunov function and an ellipsoid.These classical results require either the quadratic Lyapunov function or the employed ellipsoid to be of the centralized type.In some cases,the ellipsoids are defined dependently as the level sets of a decentralized Lyapunov function.In this paper,we extend the existing results by the simultaneous use of a general decentralized Lyapunov function and a decentralized ellipsoid parameterized independently.The proposed conditions provide less conservative results than existing works in the sense of the ultimate invariant set of attraction size.Two different approaches are proposed to extract the ultimate invariant set of attraction with a minimum size,i.e.,a purely numerical method and a numerical-analytical one.In the former,both invariant and attractiveness conditions are imposed to extract the final set of matrix inequalities.The latter is established on a principle that the attractiveness of a set implies its invariance.Thus,the stability conditions are derived based on only the attractiveness property as a set of matrix inequalities with a smaller dimension.Illustrative examples are presented to prove the satisfactory operation of the proposed stabilization methods.展开更多
Economic factors along with legislation and policies to counter harmful pollution apply specifically to maritime drive research for improved power generation and energy storage.Proton exchange membrane fuel cells are ...Economic factors along with legislation and policies to counter harmful pollution apply specifically to maritime drive research for improved power generation and energy storage.Proton exchange membrane fuel cells are considered among the most promising options for marine applications.Switching converters are the most common interfaces between fuel cells and all types of load in order to provide a stable regulated voltage.In this paper,a method using artificial neural networks(ANNs)is developed to control the dynamics and response of a fuel cell connected with a DC boost converter.Its capability to adapt to different loading conditions is established.Furthermore,a cycle-mean,black-box model for the switching device is also proposed.The model is centred about an ANN,too,and can achieve considerably faster simulation times making it much more suitable for power management applications.展开更多
This letter puts forward a method of modeling for the steady-state and small signal dynamic analysis on PWM, quasi-resonant and series/(parallel) resonant switching converters based on pulse-waveform integral approach...This letter puts forward a method of modeling for the steady-state and small signal dynamic analysis on PWM, quasi-resonant and series/(parallel) resonant switching converters based on pulse-waveform integral approach. As an example, PWM and quasi-resonant converters are used to discuss the principle of the approach. The results are compared with those in the relative literatures. Computer aided analysis are made to confirm the correctness.展开更多
The hysteresis control combined with PWM control non-inverting buck-boost was proposed to improve the light load efficiency and power density.The constant inductor current control(CICC)was established to mitigate the ...The hysteresis control combined with PWM control non-inverting buck-boost was proposed to improve the light load efficiency and power density.The constant inductor current control(CICC)was established to mitigate the dependence on the external components and device variation and make smooth transition between hysteresis control loop and pulse width modulation(PWM)control loop.The small signal model was deduced for the buck and boost operation mode.The inductor current slope control(ICSC)was proposed to implement the automatic mode transition between buck and boost mode in one switching cycle.The results show that the converter prototype has good dynamic response capability,achieving 94%efficiency and 95%peak efficiency at full 10 A load current.展开更多
A general approach is presented by which the exact frequency response of any transfer function of switched linear networks can be determined. This is achieved with a describing function approach using a state space eq...A general approach is presented by which the exact frequency response of any transfer function of switched linear networks can be determined. This is achieved with a describing function approach using a state space equation formulation. This work presents a somewhat simplified set of equations to <span style="font-family:Verdana;">one previously given by one of the authors. To demonstrate application of the general formulation, the frequency responses of switched networks used as</span><span style="font-family:Verdana;"> PWM DC-to-DC converters operating in continuous conduction mode (CCM) under voltage mode control are derived. (The accompanying paper, Part II, will present results for converters operating in discontinuous conduction mode (DCM)). From the general sets of equations developed here, both the control to output and input source variation to output frequency responses are derived. The describing function approach enables exact frequency response determination, even at high frequencies where the accuracy using average models may be compromised. Confirmation of the accuracy of the derived models is provided by comparing the responses with those obtained using the commercial simulator PSIM on a PWM boost converter. The magnitude and phase responses are shown to match perfectly over the full range of frequencies up to close to half the switching frequency. Matlab code that implements the models is given such that the user can easily adapt for use with other PWM converter topologies.</span>展开更多
This paper follows on from the first paper, Part I, where a general formulation of a describing function approach to frequency response determination of switched linear networks, such as PWM converters, was simplified...This paper follows on from the first paper, Part I, where a general formulation of a describing function approach to frequency response determination of switched linear networks, such as PWM converters, was simplified and updated. The models assume a piecewise linear state space equation description of the system and results in a closed form solution for the sought after frequency response. In Part I, model derivation was demonstrated for the case of PWM converters operating in the continuous conduction mode (CCM). This operating mode does not feature any state dependent switching times. In this paper, Part II, frequency response models for any transfer function for PWM converters operating in discontinuous conduction mode (DCM) are derived based on the theory presented in Part I. This operating model features state dependent switching times. The describing function models developed are exact and therefore, in terms of accuracy, are to be preferred over averaged models which are widely used. The example of a boost dc-to-dc converter operating in DCM is simulated to obtain the control to output and input to output frequency responses and are compared with the models derived here. Excellent agreement between the simulated and model responses was found. Matlab code implementing the analytical models is also presented which the user can adapt for any other PWM converter topology. The models derived here may be used as a basis from which simplified models may be derived while still preserving required accuracy.展开更多
DC–DC converters have achieved great popularity in recent decades due to their immense penetration in various applications.With this motivation,the authors have conducted a thorough review of recent advancements in v...DC–DC converters have achieved great popularity in recent decades due to their immense penetration in various applications.With this motivation,the authors have conducted a thorough review of recent advancements in various topologies of DC–DC converters.The need for DC power has raised further for certain applications like grid integration of distributed generation(DG),solar photovoltaic(PV),wind power generation(WPG),fuel cells(FC),etc.The investigation of converter topology is performed to achieve the desired objective of a specific application.Like in a PV system,to obtain the inherent capability of a DC–DC converter for operating at the maximum power point(MPP)and thereby electronically extracting the maximum power from the source.Hence,a detailed review of topological advancements on the low to medium-voltage and medium-to-high-power DC–DC converters has been carried out.Moreover,a thorough investigation has been carried out on profuse closed-loop strategies and compared with each other for obtaining the optimum or maximum output performance and thereby obtaining the utmost source utilization.The modern control techniques though have relatively more calculation time but,they tend to reduce the steady-state error that leads to the stabilization of the converter.Lastly,certain applications of the DC–DC converters have been explained to get an overall idea of the usefulness of such power converters.展开更多
Based on the high frequency and large signal discrete-time model for switching converters,a nonlinear discrete-time control method is designed on the principle of dynamic programming. In one switch period the optimal ...Based on the high frequency and large signal discrete-time model for switching converters,a nonlinear discrete-time control method is designed on the principle of dynamic programming. In one switch period the optimal duty ratio is got in accordance with a minimum error of the output voltage,then the duty ratio is checked and regulated with the energy function in order to make the global performance best. In thisway the complete objective function is obtained. Based on the objective function,the fast and accurate control effect is accomplished.展开更多
In view of reasonable explanation of intermittent subharmonics and chaos that can be gained from coupling filter between circuits,this paper discusses a method that maps time bifurcation with parameter bifurcation.Bas...In view of reasonable explanation of intermittent subharmonics and chaos that can be gained from coupling filter between circuits,this paper discusses a method that maps time bifurcation with parameter bifurcation.Based on this mapping method,the general analysis method of characteristic multiplier,which is originally aimed at parameter bifurcation,can be used for the study of intermittency,i.e.,time bifurcation.In this paper,all researches coming from characteristic multipliers,parameter-bifurcation diagrams,and the largest Lyapunov exponent indicate the same results as those produced by simulation and experiment.Thus,it is proved theoretically that the intermittency in switching power converter can be explained in terms of coupling of spurious interference.展开更多
A 10 MHz ripple-based on-time controlled buck converter is presented. A novel low-cost dual ripple compensation, which consists of coupling capacitor compensation and passive equivalent series resistance compensation,...A 10 MHz ripple-based on-time controlled buck converter is presented. A novel low-cost dual ripple compensation, which consists of coupling capacitor compensation and passive equivalent series resistance compensation, is proposed to achieve a fast load transient response and robust stability simultaneously. Implemented in a 2P4M 0.35 um CMOS process, the converter achieves fix-frequency output with a ripple of below 10 mV and an overshoot of 10 mV at 400 mA step load transient response. With width optimization of the power transistors in an ultra-heavy load and PFM control in a light load, the efficiency stays at over 83% for a load range from 20 mA to 1.5 A and the peak efficiency reaches 90.16%.展开更多
文摘A new family of converters,high-performance AC/DC power factor correction(PFC) switching converters with one-cycle control technology and active floating-charge technology,was derived and experimentally verified.The topology of a single-phase CCM and DCM Boost-PFC switching converter was also analyzed.Its operating prniciples and control methods were expounded.Based on these,a new type of AC/DC switching converter circuits for PFC combined with one-cycle control technology was presented herein.The proposed AC/DC switching converter significantly helps improve the converter efficiency and its power factor value.
基金Project supported by the National Natural Science Foundation of China (Grant No.50677056)the Natural Science Foundation of Jiangsu Province,China (Grant No.BK2009105)+1 种基金the Cultivation Project of Excellent Doctorate Dissertation of Southwest Jiaotong University,Chinathe Doctoral Innovation Foundation of Southwest Jiaotong University,China
文摘The discrete iterative map models of peak current-mode (PCM) and valley current-mode (VCM) controlled buck converters, boost converters, and buck-boost converters with ramp compensation are established and their dynamical behaviours are investigated by using the operation region, parameter space map, bifurcation diagram, and Lyapunov exponent spectrum. The research results indicate that ramp compensation extends the stable operation range of the PCM controlled switching dc-dc converter to D 〉 0.5 and that of the VCM controlled switching dc-dc converter to D 〈 0.5. Compared with PCM controlled switching dc-dc converters with ramp compensation, VCM controlled switching dc-dc converters with ramp compensation exhibit interesting symmetrical dynamics. Experimental results are given to verify the analysis results in this paper.
文摘An analysis technique of steady state and stability for closed-loop PWM DC/DC switching converters is presented. Using this method, the closed-loop switching converter is transformed into an open-loop system. By means of the fact that in steady state, the two boundary values are equal in one switching period. The exponential matrix is evaluated by precise time-domain-integration method, and then the related curve between feedback duty cycle and the input one is obtained. Not only can the steady-state duty cycle be found from the curve, but also the stability and stable domain of the system. Compared with other methods, it features with simplicity and less calculation, and fit for numerical simulation and analysis for closed-loop switching converters. The simulation results of examples indicate the correctness of the presented method.
文摘The multi-phase implementation in the QR (quasi resonant) ZCS (zero current switching) SC (switched capacitor) bidirectional DC-DC converter structure has been proposed to reduce current ripple, switching loss and significantly increase the converter efficiency and power density. This approach provides a more precise output voltage to obtain voltage conversion ratios from the double-mode versus half-mode to n-mode versus 1/n mode. This is accomplished by adding a different number of switched-capacitors and power MOSFET switches with a small series connected resonant inductor for forward and reverse schemes. The size and cost can be reduced when the proposed converter has been designed with the coupled inductors. The simulation and experimental results have been used to demonstrate the performance of the two-phase with and without coupled inductor interleaved QR ZCS SC converters for bidirectional power flow control application, and an extending structure for N-phase is mentioned.
文摘This paper addresses the problem of global practical stabilization of discrete-time switched affine systems via statedependent switching rules.Several attempts have been made to solve this problem via different types of a common quadratic Lyapunov function and an ellipsoid.These classical results require either the quadratic Lyapunov function or the employed ellipsoid to be of the centralized type.In some cases,the ellipsoids are defined dependently as the level sets of a decentralized Lyapunov function.In this paper,we extend the existing results by the simultaneous use of a general decentralized Lyapunov function and a decentralized ellipsoid parameterized independently.The proposed conditions provide less conservative results than existing works in the sense of the ultimate invariant set of attraction size.Two different approaches are proposed to extract the ultimate invariant set of attraction with a minimum size,i.e.,a purely numerical method and a numerical-analytical one.In the former,both invariant and attractiveness conditions are imposed to extract the final set of matrix inequalities.The latter is established on a principle that the attractiveness of a set implies its invariance.Thus,the stability conditions are derived based on only the attractiveness property as a set of matrix inequalities with a smaller dimension.Illustrative examples are presented to prove the satisfactory operation of the proposed stabilization methods.
基金This work has been funded by the Helmholtz Alliance ROBEX–Robotic Exploration of Extreme Environments.The authors would also like to thank the National Science Foundation(NSF)and specifically the Energy,Power,Control and Networks(EPCN)program for their valuable ongoing support in this research within the framework of grant ECCS-1809182‘Collaborative Research:Design and Control of Networked Offshore Hydrokinetic Power-Plants with Energy Storage’.
文摘Economic factors along with legislation and policies to counter harmful pollution apply specifically to maritime drive research for improved power generation and energy storage.Proton exchange membrane fuel cells are considered among the most promising options for marine applications.Switching converters are the most common interfaces between fuel cells and all types of load in order to provide a stable regulated voltage.In this paper,a method using artificial neural networks(ANNs)is developed to control the dynamics and response of a fuel cell connected with a DC boost converter.Its capability to adapt to different loading conditions is established.Furthermore,a cycle-mean,black-box model for the switching device is also proposed.The model is centred about an ANN,too,and can achieve considerably faster simulation times making it much more suitable for power management applications.
文摘This letter puts forward a method of modeling for the steady-state and small signal dynamic analysis on PWM, quasi-resonant and series/(parallel) resonant switching converters based on pulse-waveform integral approach. As an example, PWM and quasi-resonant converters are used to discuss the principle of the approach. The results are compared with those in the relative literatures. Computer aided analysis are made to confirm the correctness.
文摘The hysteresis control combined with PWM control non-inverting buck-boost was proposed to improve the light load efficiency and power density.The constant inductor current control(CICC)was established to mitigate the dependence on the external components and device variation and make smooth transition between hysteresis control loop and pulse width modulation(PWM)control loop.The small signal model was deduced for the buck and boost operation mode.The inductor current slope control(ICSC)was proposed to implement the automatic mode transition between buck and boost mode in one switching cycle.The results show that the converter prototype has good dynamic response capability,achieving 94%efficiency and 95%peak efficiency at full 10 A load current.
文摘A general approach is presented by which the exact frequency response of any transfer function of switched linear networks can be determined. This is achieved with a describing function approach using a state space equation formulation. This work presents a somewhat simplified set of equations to <span style="font-family:Verdana;">one previously given by one of the authors. To demonstrate application of the general formulation, the frequency responses of switched networks used as</span><span style="font-family:Verdana;"> PWM DC-to-DC converters operating in continuous conduction mode (CCM) under voltage mode control are derived. (The accompanying paper, Part II, will present results for converters operating in discontinuous conduction mode (DCM)). From the general sets of equations developed here, both the control to output and input source variation to output frequency responses are derived. The describing function approach enables exact frequency response determination, even at high frequencies where the accuracy using average models may be compromised. Confirmation of the accuracy of the derived models is provided by comparing the responses with those obtained using the commercial simulator PSIM on a PWM boost converter. The magnitude and phase responses are shown to match perfectly over the full range of frequencies up to close to half the switching frequency. Matlab code that implements the models is given such that the user can easily adapt for use with other PWM converter topologies.</span>
文摘This paper follows on from the first paper, Part I, where a general formulation of a describing function approach to frequency response determination of switched linear networks, such as PWM converters, was simplified and updated. The models assume a piecewise linear state space equation description of the system and results in a closed form solution for the sought after frequency response. In Part I, model derivation was demonstrated for the case of PWM converters operating in the continuous conduction mode (CCM). This operating mode does not feature any state dependent switching times. In this paper, Part II, frequency response models for any transfer function for PWM converters operating in discontinuous conduction mode (DCM) are derived based on the theory presented in Part I. This operating model features state dependent switching times. The describing function models developed are exact and therefore, in terms of accuracy, are to be preferred over averaged models which are widely used. The example of a boost dc-to-dc converter operating in DCM is simulated to obtain the control to output and input to output frequency responses and are compared with the models derived here. Excellent agreement between the simulated and model responses was found. Matlab code implementing the analytical models is also presented which the user can adapt for any other PWM converter topology. The models derived here may be used as a basis from which simplified models may be derived while still preserving required accuracy.
文摘DC–DC converters have achieved great popularity in recent decades due to their immense penetration in various applications.With this motivation,the authors have conducted a thorough review of recent advancements in various topologies of DC–DC converters.The need for DC power has raised further for certain applications like grid integration of distributed generation(DG),solar photovoltaic(PV),wind power generation(WPG),fuel cells(FC),etc.The investigation of converter topology is performed to achieve the desired objective of a specific application.Like in a PV system,to obtain the inherent capability of a DC–DC converter for operating at the maximum power point(MPP)and thereby electronically extracting the maximum power from the source.Hence,a detailed review of topological advancements on the low to medium-voltage and medium-to-high-power DC–DC converters has been carried out.Moreover,a thorough investigation has been carried out on profuse closed-loop strategies and compared with each other for obtaining the optimum or maximum output performance and thereby obtaining the utmost source utilization.The modern control techniques though have relatively more calculation time but,they tend to reduce the steady-state error that leads to the stabilization of the converter.Lastly,certain applications of the DC–DC converters have been explained to get an overall idea of the usefulness of such power converters.
文摘Based on the high frequency and large signal discrete-time model for switching converters,a nonlinear discrete-time control method is designed on the principle of dynamic programming. In one switch period the optimal duty ratio is got in accordance with a minimum error of the output voltage,then the duty ratio is checked and regulated with the energy function in order to make the global performance best. In thisway the complete objective function is obtained. Based on the objective function,the fast and accurate control effect is accomplished.
基金supported by the National Natural Science Foundation of China (No.60402001)the National High Technology Research and Development Program of China (No.2004AA1Z1060).
文摘In view of reasonable explanation of intermittent subharmonics and chaos that can be gained from coupling filter between circuits,this paper discusses a method that maps time bifurcation with parameter bifurcation.Based on this mapping method,the general analysis method of characteristic multiplier,which is originally aimed at parameter bifurcation,can be used for the study of intermittency,i.e.,time bifurcation.In this paper,all researches coming from characteristic multipliers,parameter-bifurcation diagrams,and the largest Lyapunov exponent indicate the same results as those produced by simulation and experiment.Thus,it is proved theoretically that the intermittency in switching power converter can be explained in terms of coupling of spurious interference.
文摘A 10 MHz ripple-based on-time controlled buck converter is presented. A novel low-cost dual ripple compensation, which consists of coupling capacitor compensation and passive equivalent series resistance compensation, is proposed to achieve a fast load transient response and robust stability simultaneously. Implemented in a 2P4M 0.35 um CMOS process, the converter achieves fix-frequency output with a ripple of below 10 mV and an overshoot of 10 mV at 400 mA step load transient response. With width optimization of the power transistors in an ultra-heavy load and PFM control in a light load, the efficiency stays at over 83% for a load range from 20 mA to 1.5 A and the peak efficiency reaches 90.16%.