In this paper, a robust sliding mode controller for the control of dc-dc buck converter is designed and analyzed. Dynamic equations describing the buck converter are derived and sliding mode controller is designed. A ...In this paper, a robust sliding mode controller for the control of dc-dc buck converter is designed and analyzed. Dynamic equations describing the buck converter are derived and sliding mode controller is designed. A two-loop control is employed for a buck converter. The robustness of the sliding mode controlled buck converter system is tested for step load changes and input voltage variations. The theoretical predictions are validated by means of simulations. Matlab/Simulink is used for the simulations. The simulation results are presented. The buck converter is tested with operating point changes and parameter uncertainties. Fast dynamic response of the output voltage and robustness to load and input voltage variations are obtained.展开更多
This paper presents a simple and systematic approach to design second order sliding mode controller for buck converters.The second order sliding mode control(SOSMC)based on twisting algorithm has been implemented to c...This paper presents a simple and systematic approach to design second order sliding mode controller for buck converters.The second order sliding mode control(SOSMC)based on twisting algorithm has been implemented to control buck switch mode converter.The idea behind this strategy is to suppress chattering and maintain robustness and finite time convergence properties of the output voltage error to the equilibrium point under the load variations and parametric uncertainties.In addition,the influence of the twisting algorithm on the performance of closed-loop system is investigated and compared with other algorithms of first order sliding mode control such as adaptive sliding mode control(ASMC),nonsingular terminal sliding mode control(NTSMC).In comparative evaluation,the transient response of the output voltage with the step change in the load and the start-up response of the output voltage with the step change in the input voltage of buck converter were compared.Experimental results were obtained from a hardware setup constructed in laboratory.Finally,for all of the surveyed control methods,the theoretical considerations,numerical simulations,and experimental measurements from a laboratory prototype are compared for different operating points.It is shown that the proposed twisting method presents an improvement in steady state error and settling time of output voltage during load changes.展开更多
This paper proposes the new cascaded series parallel design for improved dynamic performance of DC-DC buck boost converters by a new Sliding Mode Control (SMC) method. The converter is controlled using Sliding Mode Co...This paper proposes the new cascaded series parallel design for improved dynamic performance of DC-DC buck boost converters by a new Sliding Mode Control (SMC) method. The converter is controlled using Sliding Mode Control method that utilizes the converter’s duty ratio to determine the skidding surface. System modeling and simulation results are presented. The results also showed an improved overall performance over typical PID controller, and there was no overshoot or settling time, tracking the desired output nicely. Improved converter performance and robustness were expected.展开更多
The working of Canonical switching cell(CSC)converter was studied and its equivalent circuit during ON and OFF states were obtained.State space model of CSC converter in ON and OFF states were developed using the Kirc...The working of Canonical switching cell(CSC)converter was studied and its equivalent circuit during ON and OFF states were obtained.State space model of CSC converter in ON and OFF states were developed using the Kirchhoff laws.The state space matrices were used to construct the transfer functions of ON&OFF states.The step response of the converter was simulated using MATLAB.The step response curve was obtained using different values of circuit components(L,C1,C2 and RL)and optimized.The characteristic parameters such as rise time,overshoot,settling time,steady state error and stability were determined using the step response curve.The response curve shows that there is no overshoot;the rise time and settling time are very low as expected for a converter and its stability is very high but the amplitude is very.The circuit was tuned to attain the expected amplitude using PID controller with the help of Genetic algorithm.The excellent results of circuits’characteristic parameters are very useful guideline for constructing such CSC converters for DC-DC conversions.The circuit characteristic parameters are useful in constructing such CSC converters for DCDC conversions in driving solar energy using solar panel.展开更多
Renewable energy with sources such as photovoltaic(PV)or fuel cells can be utilized for the generation of elec-trical power.But these sources generate fewer voltage values and therefore require high gain converters to...Renewable energy with sources such as photovoltaic(PV)or fuel cells can be utilized for the generation of elec-trical power.But these sources generate fewer voltage values and therefore require high gain converters to match with DC bus voltage in microgrids.These high gain converters can be implemented with switched capacitors to meet the required DC bus voltage.Switched capacitors operate in a series and parallel combination during switch-ing operation and produce high static gain,limits reverse voltage that appears across the components.A novel converter is proposed that satisfies all the features such as high voltage gain,only one switch,forces less potential stress cross the components,ripple current is less.These features of the proposed converter are verified through MATLAB/SIMULINK.展开更多
The adapted DC-DC converters should be smaller in size and have a small output current ripple to meet the increasing demand for low voltages with high performance and high density micro processors for several microele...The adapted DC-DC converters should be smaller in size and have a small output current ripple to meet the increasing demand for low voltages with high performance and high density micro processors for several microelectronic load applications. This paper proposes a DC-DC converter using variable on-time and variable switching frequency control enhanced constant ripple current control and reduced magnetic components. The proposed converter is realized by making the turn-offtime proportional to the on-time of the converter, according to the input and output voltage, thereby reducing the corresponding current ripple on output voltage in the continuous conduction mode. A Buck DC-DC converter using the proposed control strategy is analyzed in detail, along with some experimental results to show the performance and effectiveness of this converter.展开更多
The MPPT (maximum power point tracking) is one of the most important features of a regulator system that processes the energy produced by a photovoltaic generator. It is necessary, in fact, to design a controller th...The MPPT (maximum power point tracking) is one of the most important features of a regulator system that processes the energy produced by a photovoltaic generator. It is necessary, in fact, to design a controller that is able to set the output value of the voltage and ensure the working within the maximum power point. In this paper, we propose the application of the robust sliding mode control technique to a DC-DC buck converter which is combined with a classical P & O (perturbation and observation) algorithm to enhance the solar system efficiency. Dynamic equations describing the boost converter are derived and a sliding mode controller for a buck converter is designed. It is shown that, this control approach gives good results in terms of robustness toward load and input voltage variations. The effectiveness of the proposed work is verified by the simulation results under PowerSim environment.展开更多
This paper presents an improved self sustained oscillating controller circuit using LCC components for improving the overall efficiency of the system. It has a micro controller based active controller, which controls ...This paper presents an improved self sustained oscillating controller circuit using LCC components for improving the overall efficiency of the system. It has a micro controller based active controller, which controls the performance from no-load up to full-load. The steady state characteristics are developed and a design example is given in detail. The proposed controller allows zero current switching at any loading condition which results in a reasonable reduction of power loss during switching with a promising efficiency. Analytical and experimental results verify the achievement the design specifications.展开更多
Wide bandgap(WBG)semiconductors,such as silicon carbide(SiC)and gallium nitride(GaN),exhibit superior physical properties and demonstrate great potential for replacing conventional silicon(Si)semiconductors with WBG t...Wide bandgap(WBG)semiconductors,such as silicon carbide(SiC)and gallium nitride(GaN),exhibit superior physical properties and demonstrate great potential for replacing conventional silicon(Si)semiconductors with WBG technology,pushing the boundaries of power devices to handle higher blocking voltages,switching frequencies,output power levels,and operating temperatures.However,tradeoffs in switching performance and converter efficiency when substituting GaN devices for Si and SiC counterparts are not well-defined,especially in a cascode configuration.Additional research with further detailed investigation and analysis is necessitated for medium-voltage GaN devices in power converter applications.Therefore,the aim of this research is to experimentally investigate the impact of emerging 650/900 V cascode GaN devices on bidirectional dc-dc converters that are suitable for energy storage and distributed renewable energy systems.Dynamic characteristics of Si,SiC,and cascode GaN power devices are examined through the double-pulse test(DPT)circuit at different gate resistance values,device currents,and DC bus voltages.Furthermore,the switching behavior and energy loss as well as the rate of voltage and current changes over the time are studied and analyzed at various operating conditions.A 500 W experimental converter prototype is implemented to validate the benefits of cascode GaN devices on the converter operation and performance.Comprehensive analysis of the power losses and efficiency improvements for Si-based,SiC-based,and GaN-based converters are performed and evaluated as the switching frequency,working temperature,and output power level are in-creased.The experimental results reveal significant improvements in switching performance and energy efficiency from the emerging cascode GaN devices in the bidirectional converters.展开更多
This paper proposes the design and experimentation of digital control of soft-switched interleaved boost converter using FPGA for Telecommunication System. The switching devices in the proposed converter are turned on...This paper proposes the design and experimentation of digital control of soft-switched interleaved boost converter using FPGA for Telecommunication System. The switching devices in the proposed converter are turned on and off with Zero Voltage Switching (ZVS) and Zero Current Switching (ZCS) respectively. The circuit is operated in Continuous Conduction Mode (CCM) with various load ranges having duty cycle of more than 50%. The proposed converter is studied by developing the simulation module in MATLAB/SIMULINK. A PI controller is designed and implemented in FPGA to obtain a regulated DC output for line and load variations. Simulation and experimentation results are verified with a prototype development of the proposed converter. The results indicate that the converter performance is enhanced with closed loop control.展开更多
The multi-phase implementation in the QR (quasi resonant) ZCS (zero current switching) SC (switched capacitor) bidirectional DC-DC converter structure has been proposed to reduce current ripple, switching loss a...The multi-phase implementation in the QR (quasi resonant) ZCS (zero current switching) SC (switched capacitor) bidirectional DC-DC converter structure has been proposed to reduce current ripple, switching loss and significantly increase the converter efficiency and power density. This approach provides a more precise output voltage to obtain voltage conversion ratios from the double-mode versus half-mode to n-mode versus 1/n mode. This is accomplished by adding a different number of switched-capacitors and power MOSFET switches with a small series connected resonant inductor for forward and reverse schemes. The size and cost can be reduced when the proposed converter has been designed with the coupled inductors. The simulation and experimental results have been used to demonstrate the performance of the two-phase with and without coupled inductor interleaved QR ZCS SC converters for bidirectional power flow control application, and an extending structure for N-phase is mentioned.展开更多
Two-level totem-pole power factor correction(PFC)converters in critical conduction mode(CRM)suffer from the wide regulation range of switching frequency.Besides,in highfrequency applications,the number of switching ti...Two-level totem-pole power factor correction(PFC)converters in critical conduction mode(CRM)suffer from the wide regulation range of switching frequency.Besides,in highfrequency applications,the number of switching times increases,resulting in significant switching losses.To solve these issues,this paper proposes an improved modulation strategy for the single-phase three-level neutral-point-clamped(NPC)converter in CRM with PFC.By optimizing the discharging strategy and switching state sequence,the switching frequency and its variation range have been efficiently reduced.The detailed performance analysis is also presented regarding the switching frequency,the average switching times,and the effect of voltage gain.A 2 k W prototype is built to verify the effectiveness of the proposed modulation strategy and analysis results.Compared with the totem-pole PFC converter,the switching frequency regulation range of the three-level PFC converter is reduced by 36.48%and the average switching times is reduced by 45.10%.The experimental result also shows a 1.2%higher efficiency for the three-level PFC converter in the full load range.展开更多
To realize effective utilization of renewable energy sources,a novel polymorphic topology with hybrid control strategy based LLC resonant converter was analyzed and designed in this paper.By combining the merits of a ...To realize effective utilization of renewable energy sources,a novel polymorphic topology with hybrid control strategy based LLC resonant converter was analyzed and designed in this paper.By combining the merits of a full bridge LLC resonant converter,three-level half bridge LLC resonant converter,and variable frequency control mode,the converter realizes an intelligent estimation of input voltage by automatically changing its internal cir-cuit topology.Under this control strategy,different input voltages determine different operation modes.This is achieved in full bridge LLC mode when the input voltage is low.If the input voltage rises to a certain level,it operates in three-level half bridge LLC mode.These switches are digital and entirely carried out by the DSP(Digi-tal Signal Processor),which means that an auxiliary circuit is unnecessary,where a simple strategy of software modification can be utilized.Experimental results of a 500W prototype with 100V~600V input voltage and full load efficiency of up to 92%are developed to verify feasibility and practicability.This type of converter is suitable for applications with an ultra-wide input voltage range,such as wind turbines,photovoltaic generators,bioenergy,and other renewable energy sources.展开更多
The Objective of this paper is to give more insight into CCM Operation of the LCL Converter to obtain op-timum design using state-space analysis and to verify the results using PSPICE Simulation for wide variation in ...The Objective of this paper is to give more insight into CCM Operation of the LCL Converter to obtain op-timum design using state-space analysis and to verify the results using PSPICE Simulation for wide variation in loading conditions. LCL Resonant Full Bridge Converter (RFB) is a new, high performance DC-DC con-verter. High frequency dc-dc resonant converters are widely used in many space and radar power supplies owing to their small size and lightweight. The limitations of two element resonant topologies can be over-come by adding a third reactive element termed as modified series resonant converter (SRC). A three ele-ment resonant converter capable of driving voltage type load with load independent operation is presented. We have used embedded based triggering circuit and the embedded ‘C’ Program is checked in Keil Software and also triggering circuit is simulated in PSPICE Software. To compare the simulated results with hardware results and designed resonant converter is 200W and the switching frequency is 50 KHz.展开更多
A non-isolated high gain step-up DC-DC converter for low power applications is suggested in this study.In the designed transformerless converter,the main switch current and voltage stress is reduced while maintaining ...A non-isolated high gain step-up DC-DC converter for low power applications is suggested in this study.In the designed transformerless converter,the main switch current and voltage stress is reduced while maintaining high voltage gain.For instance,with a duty cycle of 0.5 a voltage gain equal to 5 is achieved while the normalized switch voltage stress is 0.4.Also,it decreases power losses of active and passive elements.In the proposed converter design,the switched-capacitor(SC)technique is used to obtain maximum voltage transfer gain using only one switch.The three modes of operation,i.e.,continuous conduction mode(CCM),boundary conduction mode(BCM),and discontinuous conduction mode(DCM),are studied in detail.The small signal analysis(SSA)of the designed converter is investigated,and its steady-state model is examined under CCM.Performance of the proposed converter proposed in this study is assessed and tested using a prototype.Efficiency of the converter is recorded above 94%in a wide range of output powers.Overall,compared to the other converters,the results suggest satisfactory performance of the designed converter.An issue of the proposed converter is that its input current is not smooth due to using the switched-capacitor cell in its structure.This issue is alleviated by using input filters.展开更多
The developing populace and industrialization power demand prompted the requirement for power generation from elective sources.The desire for this pursuit is solid due to the ever-present common assets of petroleum de...The developing populace and industrialization power demand prompted the requirement for power generation from elective sources.The desire for this pursuit is solid due to the ever-present common assets of petroleum deri-vatives and their predominant ecological issues.It is generally acknowledged that sustainable power sources are one of the best answers for the energy emergency.Among these,Photovoltaic(PV)sources have many benefits to bestow a very promising future.If integrated into the existing power distribution infrastructure,the solar source will be more successful,requiring efficient Direct Current(DC)-Alternating Current(AC)conversion.This paper mainly aims to improve control-lers’performance between AC/DC Energy sources and the DC loads using the Adaptive Nonlinear Sliding Mode(ANSM)control method.The proposed ANSM method efficiently controls power quality issues,such as transient response,powerflow reliability and Total Harmonics Distortion(THD).The proposed con-troller is applied for both AC/DC and DC/DC converters and the performance of the proposed controller is validated through simulation checking the above para-meters.The simulation results confirm ANSM configuration is more reliable and efficient than the existing fuzzy and sliding mode control methods.展开更多
文摘In this paper, a robust sliding mode controller for the control of dc-dc buck converter is designed and analyzed. Dynamic equations describing the buck converter are derived and sliding mode controller is designed. A two-loop control is employed for a buck converter. The robustness of the sliding mode controlled buck converter system is tested for step load changes and input voltage variations. The theoretical predictions are validated by means of simulations. Matlab/Simulink is used for the simulations. The simulation results are presented. The buck converter is tested with operating point changes and parameter uncertainties. Fast dynamic response of the output voltage and robustness to load and input voltage variations are obtained.
文摘This paper presents a simple and systematic approach to design second order sliding mode controller for buck converters.The second order sliding mode control(SOSMC)based on twisting algorithm has been implemented to control buck switch mode converter.The idea behind this strategy is to suppress chattering and maintain robustness and finite time convergence properties of the output voltage error to the equilibrium point under the load variations and parametric uncertainties.In addition,the influence of the twisting algorithm on the performance of closed-loop system is investigated and compared with other algorithms of first order sliding mode control such as adaptive sliding mode control(ASMC),nonsingular terminal sliding mode control(NTSMC).In comparative evaluation,the transient response of the output voltage with the step change in the load and the start-up response of the output voltage with the step change in the input voltage of buck converter were compared.Experimental results were obtained from a hardware setup constructed in laboratory.Finally,for all of the surveyed control methods,the theoretical considerations,numerical simulations,and experimental measurements from a laboratory prototype are compared for different operating points.It is shown that the proposed twisting method presents an improvement in steady state error and settling time of output voltage during load changes.
文摘This paper proposes the new cascaded series parallel design for improved dynamic performance of DC-DC buck boost converters by a new Sliding Mode Control (SMC) method. The converter is controlled using Sliding Mode Control method that utilizes the converter’s duty ratio to determine the skidding surface. System modeling and simulation results are presented. The results also showed an improved overall performance over typical PID controller, and there was no overshoot or settling time, tracking the desired output nicely. Improved converter performance and robustness were expected.
文摘The working of Canonical switching cell(CSC)converter was studied and its equivalent circuit during ON and OFF states were obtained.State space model of CSC converter in ON and OFF states were developed using the Kirchhoff laws.The state space matrices were used to construct the transfer functions of ON&OFF states.The step response of the converter was simulated using MATLAB.The step response curve was obtained using different values of circuit components(L,C1,C2 and RL)and optimized.The characteristic parameters such as rise time,overshoot,settling time,steady state error and stability were determined using the step response curve.The response curve shows that there is no overshoot;the rise time and settling time are very low as expected for a converter and its stability is very high but the amplitude is very.The circuit was tuned to attain the expected amplitude using PID controller with the help of Genetic algorithm.The excellent results of circuits’characteristic parameters are very useful guideline for constructing such CSC converters for DC-DC conversions.The circuit characteristic parameters are useful in constructing such CSC converters for DCDC conversions in driving solar energy using solar panel.
文摘Renewable energy with sources such as photovoltaic(PV)or fuel cells can be utilized for the generation of elec-trical power.But these sources generate fewer voltage values and therefore require high gain converters to match with DC bus voltage in microgrids.These high gain converters can be implemented with switched capacitors to meet the required DC bus voltage.Switched capacitors operate in a series and parallel combination during switch-ing operation and produce high static gain,limits reverse voltage that appears across the components.A novel converter is proposed that satisfies all the features such as high voltage gain,only one switch,forces less potential stress cross the components,ripple current is less.These features of the proposed converter are verified through MATLAB/SIMULINK.
文摘The adapted DC-DC converters should be smaller in size and have a small output current ripple to meet the increasing demand for low voltages with high performance and high density micro processors for several microelectronic load applications. This paper proposes a DC-DC converter using variable on-time and variable switching frequency control enhanced constant ripple current control and reduced magnetic components. The proposed converter is realized by making the turn-offtime proportional to the on-time of the converter, according to the input and output voltage, thereby reducing the corresponding current ripple on output voltage in the continuous conduction mode. A Buck DC-DC converter using the proposed control strategy is analyzed in detail, along with some experimental results to show the performance and effectiveness of this converter.
文摘The MPPT (maximum power point tracking) is one of the most important features of a regulator system that processes the energy produced by a photovoltaic generator. It is necessary, in fact, to design a controller that is able to set the output value of the voltage and ensure the working within the maximum power point. In this paper, we propose the application of the robust sliding mode control technique to a DC-DC buck converter which is combined with a classical P & O (perturbation and observation) algorithm to enhance the solar system efficiency. Dynamic equations describing the boost converter are derived and a sliding mode controller for a buck converter is designed. It is shown that, this control approach gives good results in terms of robustness toward load and input voltage variations. The effectiveness of the proposed work is verified by the simulation results under PowerSim environment.
文摘This paper presents an improved self sustained oscillating controller circuit using LCC components for improving the overall efficiency of the system. It has a micro controller based active controller, which controls the performance from no-load up to full-load. The steady state characteristics are developed and a design example is given in detail. The proposed controller allows zero current switching at any loading condition which results in a reasonable reduction of power loss during switching with a promising efficiency. Analytical and experimental results verify the achievement the design specifications.
文摘Wide bandgap(WBG)semiconductors,such as silicon carbide(SiC)and gallium nitride(GaN),exhibit superior physical properties and demonstrate great potential for replacing conventional silicon(Si)semiconductors with WBG technology,pushing the boundaries of power devices to handle higher blocking voltages,switching frequencies,output power levels,and operating temperatures.However,tradeoffs in switching performance and converter efficiency when substituting GaN devices for Si and SiC counterparts are not well-defined,especially in a cascode configuration.Additional research with further detailed investigation and analysis is necessitated for medium-voltage GaN devices in power converter applications.Therefore,the aim of this research is to experimentally investigate the impact of emerging 650/900 V cascode GaN devices on bidirectional dc-dc converters that are suitable for energy storage and distributed renewable energy systems.Dynamic characteristics of Si,SiC,and cascode GaN power devices are examined through the double-pulse test(DPT)circuit at different gate resistance values,device currents,and DC bus voltages.Furthermore,the switching behavior and energy loss as well as the rate of voltage and current changes over the time are studied and analyzed at various operating conditions.A 500 W experimental converter prototype is implemented to validate the benefits of cascode GaN devices on the converter operation and performance.Comprehensive analysis of the power losses and efficiency improvements for Si-based,SiC-based,and GaN-based converters are performed and evaluated as the switching frequency,working temperature,and output power level are in-creased.The experimental results reveal significant improvements in switching performance and energy efficiency from the emerging cascode GaN devices in the bidirectional converters.
文摘This paper proposes the design and experimentation of digital control of soft-switched interleaved boost converter using FPGA for Telecommunication System. The switching devices in the proposed converter are turned on and off with Zero Voltage Switching (ZVS) and Zero Current Switching (ZCS) respectively. The circuit is operated in Continuous Conduction Mode (CCM) with various load ranges having duty cycle of more than 50%. The proposed converter is studied by developing the simulation module in MATLAB/SIMULINK. A PI controller is designed and implemented in FPGA to obtain a regulated DC output for line and load variations. Simulation and experimentation results are verified with a prototype development of the proposed converter. The results indicate that the converter performance is enhanced with closed loop control.
文摘The multi-phase implementation in the QR (quasi resonant) ZCS (zero current switching) SC (switched capacitor) bidirectional DC-DC converter structure has been proposed to reduce current ripple, switching loss and significantly increase the converter efficiency and power density. This approach provides a more precise output voltage to obtain voltage conversion ratios from the double-mode versus half-mode to n-mode versus 1/n mode. This is accomplished by adding a different number of switched-capacitors and power MOSFET switches with a small series connected resonant inductor for forward and reverse schemes. The size and cost can be reduced when the proposed converter has been designed with the coupled inductors. The simulation and experimental results have been used to demonstrate the performance of the two-phase with and without coupled inductor interleaved QR ZCS SC converters for bidirectional power flow control application, and an extending structure for N-phase is mentioned.
基金supported in part by National Natural Science Foundation of China(No.52177193)in part by China Scholarship Council(CSC)State Scholarship Fund International Clean Energy Talent Project(No.[2019]157)。
文摘Two-level totem-pole power factor correction(PFC)converters in critical conduction mode(CRM)suffer from the wide regulation range of switching frequency.Besides,in highfrequency applications,the number of switching times increases,resulting in significant switching losses.To solve these issues,this paper proposes an improved modulation strategy for the single-phase three-level neutral-point-clamped(NPC)converter in CRM with PFC.By optimizing the discharging strategy and switching state sequence,the switching frequency and its variation range have been efficiently reduced.The detailed performance analysis is also presented regarding the switching frequency,the average switching times,and the effect of voltage gain.A 2 k W prototype is built to verify the effectiveness of the proposed modulation strategy and analysis results.Compared with the totem-pole PFC converter,the switching frequency regulation range of the three-level PFC converter is reduced by 36.48%and the average switching times is reduced by 45.10%.The experimental result also shows a 1.2%higher efficiency for the three-level PFC converter in the full load range.
文摘To realize effective utilization of renewable energy sources,a novel polymorphic topology with hybrid control strategy based LLC resonant converter was analyzed and designed in this paper.By combining the merits of a full bridge LLC resonant converter,three-level half bridge LLC resonant converter,and variable frequency control mode,the converter realizes an intelligent estimation of input voltage by automatically changing its internal cir-cuit topology.Under this control strategy,different input voltages determine different operation modes.This is achieved in full bridge LLC mode when the input voltage is low.If the input voltage rises to a certain level,it operates in three-level half bridge LLC mode.These switches are digital and entirely carried out by the DSP(Digi-tal Signal Processor),which means that an auxiliary circuit is unnecessary,where a simple strategy of software modification can be utilized.Experimental results of a 500W prototype with 100V~600V input voltage and full load efficiency of up to 92%are developed to verify feasibility and practicability.This type of converter is suitable for applications with an ultra-wide input voltage range,such as wind turbines,photovoltaic generators,bioenergy,and other renewable energy sources.
文摘The Objective of this paper is to give more insight into CCM Operation of the LCL Converter to obtain op-timum design using state-space analysis and to verify the results using PSPICE Simulation for wide variation in loading conditions. LCL Resonant Full Bridge Converter (RFB) is a new, high performance DC-DC con-verter. High frequency dc-dc resonant converters are widely used in many space and radar power supplies owing to their small size and lightweight. The limitations of two element resonant topologies can be over-come by adding a third reactive element termed as modified series resonant converter (SRC). A three ele-ment resonant converter capable of driving voltage type load with load independent operation is presented. We have used embedded based triggering circuit and the embedded ‘C’ Program is checked in Keil Software and also triggering circuit is simulated in PSPICE Software. To compare the simulated results with hardware results and designed resonant converter is 200W and the switching frequency is 50 KHz.
文摘A non-isolated high gain step-up DC-DC converter for low power applications is suggested in this study.In the designed transformerless converter,the main switch current and voltage stress is reduced while maintaining high voltage gain.For instance,with a duty cycle of 0.5 a voltage gain equal to 5 is achieved while the normalized switch voltage stress is 0.4.Also,it decreases power losses of active and passive elements.In the proposed converter design,the switched-capacitor(SC)technique is used to obtain maximum voltage transfer gain using only one switch.The three modes of operation,i.e.,continuous conduction mode(CCM),boundary conduction mode(BCM),and discontinuous conduction mode(DCM),are studied in detail.The small signal analysis(SSA)of the designed converter is investigated,and its steady-state model is examined under CCM.Performance of the proposed converter proposed in this study is assessed and tested using a prototype.Efficiency of the converter is recorded above 94%in a wide range of output powers.Overall,compared to the other converters,the results suggest satisfactory performance of the designed converter.An issue of the proposed converter is that its input current is not smooth due to using the switched-capacitor cell in its structure.This issue is alleviated by using input filters.
文摘The developing populace and industrialization power demand prompted the requirement for power generation from elective sources.The desire for this pursuit is solid due to the ever-present common assets of petroleum deri-vatives and their predominant ecological issues.It is generally acknowledged that sustainable power sources are one of the best answers for the energy emergency.Among these,Photovoltaic(PV)sources have many benefits to bestow a very promising future.If integrated into the existing power distribution infrastructure,the solar source will be more successful,requiring efficient Direct Current(DC)-Alternating Current(AC)conversion.This paper mainly aims to improve control-lers’performance between AC/DC Energy sources and the DC loads using the Adaptive Nonlinear Sliding Mode(ANSM)control method.The proposed ANSM method efficiently controls power quality issues,such as transient response,powerflow reliability and Total Harmonics Distortion(THD).The proposed con-troller is applied for both AC/DC and DC/DC converters and the performance of the proposed controller is validated through simulation checking the above para-meters.The simulation results confirm ANSM configuration is more reliable and efficient than the existing fuzzy and sliding mode control methods.