In this paper, we consider the relation between the switching dwell time and the stabilization of switched linear control systems. First of all, a concept of critical dwell time is given for switched linear systems wi...In this paper, we consider the relation between the switching dwell time and the stabilization of switched linear control systems. First of all, a concept of critical dwell time is given for switched linear systems without control inputs, and the critical dwell time is taken as an arbitrary given positive constant for a switched linear control systems with controllable switching models. Secondly, when a switched linear system has many stabilizable switching models, the problem of stabilization of the overall system is considered. An on-line feedback control is designed such that the overall system is asymptotically stabilizable under switching laws which depend only on those of uncontrollable subsystems of the switching models. Finally, when a switched system is partially controllable (While some switching models are probably unstabilizable), an on-line feedback control and a cyclic switching strategy are designed such that the overall system is asymptotically stabilizable if all switching models of this uncontrollable subsystems are asymptotically stable. In addition, algorithms for designing switching laws and controls are presented.展开更多
As for orbit transfer vehicle (OTV) with multiple satellites/payloads carried,the release of each payload will bring serious change to the mass center of OTV and the thrust produced by the swing thruster will form a r...As for orbit transfer vehicle (OTV) with multiple satellites/payloads carried,the release of each payload will bring serious change to the mass center of OTV and the thrust produced by the swing thruster will form a rather large disturbance to the attitude of OTV. Steering the nozzle to track the estimated center of mass (ECM) of OTV can reduce but not remove the disturbance due to the difference between the ECM and the practical mass center (PCM) of OTV. The practical propelling direction will change with the internal motion during the propulsion process and attitude control system should be enabled to guarantee that the propelling direction is collinear with the command. Since the structural parameters have changed,which is due to internal motion and fuel consumption,the dynamic model have to be formulated to determine these time-varying parameters and the required attitude of OTV should be determined as well. Modulating attitude quaternion results in quasi Euler angles. Based on the resulting quasi Euler angles,a novel attitude switching control law is introduced to control the variable-mass OTV. Simulation results show that,even in the case of structural asymmetry,control torque matrix asymmetry,attitude disturbance and strong coupling between the channels,the attitude of OTV can be controlled perfectly,and the proposed attitude control law is effective for the variable-mass OTV with swing thruster.展开更多
A model of uncertain switched fuzzy systems whose subsystems are uncertain fuzzy systems is presented. Robust controllers for a class of switched fuzzy systems are designed by using the Lyapunov function method. Stabi...A model of uncertain switched fuzzy systems whose subsystems are uncertain fuzzy systems is presented. Robust controllers for a class of switched fuzzy systems are designed by using the Lyapunov function method. Stability conditions for global asymptotic stability are developed and a switching strategy is proposed. An example shows the effectiveness of the method.展开更多
This article proposes a novel approach combining exponential-reaching-law-based equivalent control law with radial basis function (RBF) network-based switching law to strengthen the sliding mode control (SMC) tracking...This article proposes a novel approach combining exponential-reaching-law-based equivalent control law with radial basis function (RBF) network-based switching law to strengthen the sliding mode control (SMC) tracking capacity for systems with uncertainties and disturbances. First, SMC discrete equivalent control law is designed on the basis of the nominal model of the system and the adaptive exponential reaching law, and subsequently, stability of the algorithm is analyzed. Second, RBF network is used to f...展开更多
For conventional adaptive control, time-varying parametric uncertainty and unmodeled dynamics are ticklish problems, which will lead to undesirable performance or even instability and nonrobust behavior, respectively....For conventional adaptive control, time-varying parametric uncertainty and unmodeled dynamics are ticklish problems, which will lead to undesirable performance or even instability and nonrobust behavior, respectively. In this study, a class of discrete-time switched systems with unmodeled dynamics is taken into consideration. Moreover, nonlinear systems are here supposed to be approximated with the class of switched systems considered in this paper, and thereby switching control design is investigated for both switched systems and nonlinear systems to assure stability and performance. For robustness against unmodeled dynamics and uncertainty, robust model reference adaptive control(RMRAC) law is developed as the basis of controller design for each individual subsystem in the switched systems or nonlinear systems. Meanwhile, two different switching laws are presented for switched systems and nonlinear systems, respectively. Thereby, the authors incorporate the corresponding switching law into the RMRAC law to construct two schemes of switching control respectively for the two kinds of controlled systems. Both closed-loop analyses and simulation examples are provided to illustrate the validity of the two proposed switching control schemes. Furthermore, as to the proposed scheme for nonlinear systems, its potential for practical application is demonstrated through simulations of longitudinal control for F-16 aircraft.展开更多
The primary sensor of astronomy observation satellite (AOS) is mounted on a gimbal base which connects directly with the satellite platform and has two degrees of freedom. Attitude control for AOS with a swinging se...The primary sensor of astronomy observation satellite (AOS) is mounted on a gimbal base which connects directly with the satellite platform and has two degrees of freedom. Attitude control for AOS with a swinging sensor will be highlighted in this paper. Due to the non-negligible mass and length of the sensor, the internal motion between the satellite and the sensor will change the attitude, the position of center of mass and moment of inertia of the SYSTEM (consists of the satellite and the sen- sor). According to moment of momentum theorem, a rigid two-body dynamic model is derived, which can he used to determine the inertial tensor of the SYSTEM. Modulating the satellite's present and desired quaternions results in quasi-Euler angles and normalizing these resultant parameters can ensure that the channel corresponding to each quasi-Euler angle is in the charge of each component of the control torque. Based on the normalized quasi-Euler angles, a switching attitude control law is proposed. With the control law, the corresponding phase trajectory will slide along the switching surface to the origin (corresponding to the desired states). Simulation results show that the satellite can be controlled perfectly by thrusters with the proposed control law, even in the case of structural asymmetry and serious coupling between the control channels.展开更多
Currently,the feedback control rate of most nonlinear systems is realised by the memoryless state feedback controller which cannot affect the impact of time delay on the systems,and the general processing method of th...Currently,the feedback control rate of most nonlinear systems is realised by the memoryless state feedback controller which cannot affect the impact of time delay on the systems,and the general processing method of the Lyapunov–Krasovskii functional for the time-varying delay switched fuzzy systems(SFS)is more conservative.Therefore,this paper addresses the problem of nonfragile robust and memory state feedback control for switched fuzzy systems with unknown nonlinear disturbance.Non-fragile memory state feedback robust controller which has two controller gains different from each other,and switching law are designed to keep the proposed systems asymptotically stable for all admissible parameter uncertainties.Delay-dependent less conservative sufficient conditions are obtained through using the Lyapunov–Krasovskii functional method and free-weighting matrices depending on Leibniz–Newton,guaranteeing that the SFS can be asymptotically stable.A numerical example is given to illustrate the proposed controller performs better than the classic memoryless state feedback controller.展开更多
A robustness control of uncertain switched fuzzy systems is presented.Using the switching technique and the Lyapunov function method,a continuous state feedback controller is built to ensure that for all allowable unc...A robustness control of uncertain switched fuzzy systems is presented.Using the switching technique and the Lyapunov function method,a continuous state feedback controller is built to ensure that for all allowable uncertainties the relevant closed-loop system is asymptotically stable.Furthermore,a switching strategy that achieves system global asymptotic stability of the uncertain switched fuzzy system is given.In this model,each subsystem of the switched system is an uncertain fuzzy system,and a common parallel distributed compensation controller is presented.The main condition is given in the form of convex combinations which are more solvable.This method transforms a certain switched system and has strong robustness for various system parameters.Simulations show the feasibility and the effectiveness of this method.展开更多
基金This work was supported by the National Natural Science Foundation of China(No.60343001, 60221301) and the Foundation of Harbin EngineeringUniversity.
文摘In this paper, we consider the relation between the switching dwell time and the stabilization of switched linear control systems. First of all, a concept of critical dwell time is given for switched linear systems without control inputs, and the critical dwell time is taken as an arbitrary given positive constant for a switched linear control systems with controllable switching models. Secondly, when a switched linear system has many stabilizable switching models, the problem of stabilization of the overall system is considered. An on-line feedback control is designed such that the overall system is asymptotically stabilizable under switching laws which depend only on those of uncontrollable subsystems of the switching models. Finally, when a switched system is partially controllable (While some switching models are probably unstabilizable), an on-line feedback control and a cyclic switching strategy are designed such that the overall system is asymptotically stabilizable if all switching models of this uncontrollable subsystems are asymptotically stable. In addition, algorithms for designing switching laws and controls are presented.
文摘As for orbit transfer vehicle (OTV) with multiple satellites/payloads carried,the release of each payload will bring serious change to the mass center of OTV and the thrust produced by the swing thruster will form a rather large disturbance to the attitude of OTV. Steering the nozzle to track the estimated center of mass (ECM) of OTV can reduce but not remove the disturbance due to the difference between the ECM and the practical mass center (PCM) of OTV. The practical propelling direction will change with the internal motion during the propulsion process and attitude control system should be enabled to guarantee that the propelling direction is collinear with the command. Since the structural parameters have changed,which is due to internal motion and fuel consumption,the dynamic model have to be formulated to determine these time-varying parameters and the required attitude of OTV should be determined as well. Modulating attitude quaternion results in quasi Euler angles. Based on the resulting quasi Euler angles,a novel attitude switching control law is introduced to control the variable-mass OTV. Simulation results show that,even in the case of structural asymmetry,control torque matrix asymmetry,attitude disturbance and strong coupling between the channels,the attitude of OTV can be controlled perfectly,and the proposed attitude control law is effective for the variable-mass OTV with swing thruster.
基金the National Natural Science Foundation of China(No.60574013, 60274009).
文摘A model of uncertain switched fuzzy systems whose subsystems are uncertain fuzzy systems is presented. Robust controllers for a class of switched fuzzy systems are designed by using the Lyapunov function method. Stability conditions for global asymptotic stability are developed and a switching strategy is proposed. An example shows the effectiveness of the method.
文摘This article proposes a novel approach combining exponential-reaching-law-based equivalent control law with radial basis function (RBF) network-based switching law to strengthen the sliding mode control (SMC) tracking capacity for systems with uncertainties and disturbances. First, SMC discrete equivalent control law is designed on the basis of the nominal model of the system and the adaptive exponential reaching law, and subsequently, stability of the algorithm is analyzed. Second, RBF network is used to f...
基金supported by Deep Exploration Technology and Experimentation Project under Grant No.201311194-04partially supported by the National Natural Science Foundation of China under Grant Nos.61321002 and 61473038+1 种基金Beijing Outstanding Talents Programme under Grant No.2012D009011000003Graduate Teaching/Innovation Funding of Beijing Institute of Technology
文摘For conventional adaptive control, time-varying parametric uncertainty and unmodeled dynamics are ticklish problems, which will lead to undesirable performance or even instability and nonrobust behavior, respectively. In this study, a class of discrete-time switched systems with unmodeled dynamics is taken into consideration. Moreover, nonlinear systems are here supposed to be approximated with the class of switched systems considered in this paper, and thereby switching control design is investigated for both switched systems and nonlinear systems to assure stability and performance. For robustness against unmodeled dynamics and uncertainty, robust model reference adaptive control(RMRAC) law is developed as the basis of controller design for each individual subsystem in the switched systems or nonlinear systems. Meanwhile, two different switching laws are presented for switched systems and nonlinear systems, respectively. Thereby, the authors incorporate the corresponding switching law into the RMRAC law to construct two schemes of switching control respectively for the two kinds of controlled systems. Both closed-loop analyses and simulation examples are provided to illustrate the validity of the two proposed switching control schemes. Furthermore, as to the proposed scheme for nonlinear systems, its potential for practical application is demonstrated through simulations of longitudinal control for F-16 aircraft.
文摘The primary sensor of astronomy observation satellite (AOS) is mounted on a gimbal base which connects directly with the satellite platform and has two degrees of freedom. Attitude control for AOS with a swinging sensor will be highlighted in this paper. Due to the non-negligible mass and length of the sensor, the internal motion between the satellite and the sensor will change the attitude, the position of center of mass and moment of inertia of the SYSTEM (consists of the satellite and the sen- sor). According to moment of momentum theorem, a rigid two-body dynamic model is derived, which can he used to determine the inertial tensor of the SYSTEM. Modulating the satellite's present and desired quaternions results in quasi-Euler angles and normalizing these resultant parameters can ensure that the channel corresponding to each quasi-Euler angle is in the charge of each component of the control torque. Based on the normalized quasi-Euler angles, a switching attitude control law is proposed. With the control law, the corresponding phase trajectory will slide along the switching surface to the origin (corresponding to the desired states). Simulation results show that the satellite can be controlled perfectly by thrusters with the proposed control law, even in the case of structural asymmetry and serious coupling between the control channels.
基金This work is supported by LiaoNing Revitalization Talents Program[grant number XLYC1807138]Program for Liaoning Excellent Talents in University[grant number LR2018062]Project of Natural Science Foundation of Liaoning Province[grant number 2019-MS-237].
文摘Currently,the feedback control rate of most nonlinear systems is realised by the memoryless state feedback controller which cannot affect the impact of time delay on the systems,and the general processing method of the Lyapunov–Krasovskii functional for the time-varying delay switched fuzzy systems(SFS)is more conservative.Therefore,this paper addresses the problem of nonfragile robust and memory state feedback control for switched fuzzy systems with unknown nonlinear disturbance.Non-fragile memory state feedback robust controller which has two controller gains different from each other,and switching law are designed to keep the proposed systems asymptotically stable for all admissible parameter uncertainties.Delay-dependent less conservative sufficient conditions are obtained through using the Lyapunov–Krasovskii functional method and free-weighting matrices depending on Leibniz–Newton,guaranteeing that the SFS can be asymptotically stable.A numerical example is given to illustrate the proposed controller performs better than the classic memoryless state feedback controller.
基金supported by the National Natural Science Foundation of China (Grant No.60574013 and 60274009).
文摘A robustness control of uncertain switched fuzzy systems is presented.Using the switching technique and the Lyapunov function method,a continuous state feedback controller is built to ensure that for all allowable uncertainties the relevant closed-loop system is asymptotically stable.Furthermore,a switching strategy that achieves system global asymptotic stability of the uncertain switched fuzzy system is given.In this model,each subsystem of the switched system is an uncertain fuzzy system,and a common parallel distributed compensation controller is presented.The main condition is given in the form of convex combinations which are more solvable.This method transforms a certain switched system and has strong robustness for various system parameters.Simulations show the feasibility and the effectiveness of this method.