Recently,switched Ethernet has become an active area of research because of its wide uses in industry.However,its uses have various real-time constraints on data communications.This paper analyzes the performance of t...Recently,switched Ethernet has become an active area of research because of its wide uses in industry.However,its uses have various real-time constraints on data communications.This paper analyzes the performance of the line topology switched Ethernet as a data acquisition network.Network calculus theory,which has been successfully applied to assess the real-time performance of packet-switched networks,is used to analyze the networks.To properly describe the activity of switches,a novel approach of modeling data flows into or out of switches is addressed.Based on our model,a concisely analytical expression of the maximal end-to-end delay in line topology switched Ethernet is derived.Finally,the relative simulation results are demonstrated.These results agree well with the analytical results,and thus they validate the data flow modeling techniques.展开更多
Based on the transmission line code (TLCODE), a circuit model is developed here for analyses of main switches in the high pulsed-power facilities. With the structure of the ZR main switch as an example, a circuit mo...Based on the transmission line code (TLCODE), a circuit model is developed here for analyses of main switches in the high pulsed-power facilities. With the structure of the ZR main switch as an example, a circuit model topology of the switch is proposed, and in particular, calculation methods of the dynamic inductance and resistance of the switching arc are described. Moreover, a set of closed equations used for calculations of various node voltages are theoretically derived and numericMly discretized. Based on these discrete equations and the Matlab program, a simulation procedure is established for analyses of the ZR main switch. Voltages and currents at different key points are obtained, and comparisons are made with those of a PSpice L-C model. The comparison results show that these two models are perfectly in accord with each other with discrepancy less than 0.1%, which verifies the effectiveness of the TLCODE model to a certain extent.展开更多
Introduction: Over the past years, efforts have been made to expand access to antiretroviral combinations (cART) in low-income countries. However, major concerns are noted with drug resistance emergence, as treatment ...Introduction: Over the past years, efforts have been made to expand access to antiretroviral combinations (cART) in low-income countries. However, major concerns are noted with drug resistance emergence, as treatment failure result and need to introduce a second line treatment, more expensive and difficult to implement. The objective was to study the incidence of switch to second line, reasons for switch and risk factors using a cohort of people living with HIV in an Ambulatory Treatment Center in Dakar. Methodology: This was a cohort study of people living with HIV under cART from January 2004 to December 2013. Naive patients monitored for at least six months, regardless of their profile and regimen with baseline CD4 counts Results: The median age of the 827 patients included was 44 [IQR = 18 - 78]. The switch to second-line treatment was observed in 72 patients (8.7%) after an average of 38.5 months of follow-up. The overall incidence rate of switch to second line of antiretroviral treatment was 1.59 per 100 persons-years. Most of changes in first-line treatment were motivated by virological failures (n = 60, 83.3%) under treatment with AZT/3TC/NVP (n = 25, 34.7%) or AZT/3TC/EFV21 (29.2%). 9.7% of switch occurred after immunological failure, 1.4% after clinical failure, 4.2% after severe toxicity and 1.4% was not documented. Predictive factors identifying failures at the end of the multivariate analysis were age Conclusions: In total, CTA identified a low incidence rate of treatment failure of the first line of treatment. Associated risk factors were age < 44 years, CD4 counts below 100 cells/mm<sup>3</sup> and high viral load at treatment initiation.展开更多
The paper deals with the tests on the first 500 kV compact transmission line. The transmission line stretches from Fangshan Substation to Changping Substation nearby Beijing with a length of 83 km. In order to investi...The paper deals with the tests on the first 500 kV compact transmission line. The transmission line stretches from Fangshan Substation to Changping Substation nearby Beijing with a length of 83 km. In order to investigate the characteristics of the transmission line, many tests were performed on the line before and after its operation. The results indicate that all electrical parameters are perfectly identical to the design.展开更多
In this paper the transmission line matrix (TLM) method is exploited to evaluate the electromagnetic field distribution over a new radio frequency micro electromechanical system (RF-MEMS). A hybrid symmetrical condens...In this paper the transmission line matrix (TLM) method is exploited to evaluate the electromagnetic field distribution over a new radio frequency micro electromechanical system (RF-MEMS). A hybrid symmetrical condensed node is used to analyze S-parameters of the switch in on and off states. Furthermore, the effects of spring zigzag cuts over the bridge are analyzed. Results have authorized that TLM method offers a much faster and more reliable results compare to other numerical methods because of its time domain behavior and transmission line basis.展开更多
Packet contention is a key issue in optical packet switch (OPS) networks and finds a viable solution by including optical buffering techniques incorporating fiber delay lines (FDLs) in the switch architecture. The pre...Packet contention is a key issue in optical packet switch (OPS) networks and finds a viable solution by including optical buffering techniques incorporating fiber delay lines (FDLs) in the switch architecture. The present paper proposes a novel switch architecture for packet contention resolution in synchronous OPS network employing the packet circulation in FDLs in a synchronized manner. A mathematical model for the proposed switch architecture is developed employing packet queuing control to estimate the blocking probability for the incoming traffic. The switch performance is analyzed with a suitable contention resolution al-gorithm through the computer simulation. The simulation results substantiate the proposed model for the switch architecture.展开更多
Electrical power transmission is dominated by overhead line systems at present.This is mainly based on more than hundred years of experience of utilities in running overhead lines.Furthermore,overhead lines have prove...Electrical power transmission is dominated by overhead line systems at present.This is mainly based on more than hundred years of experience of utilities in running overhead lines.Furthermore,overhead lines have proven their operational reliability and functional assurance.In the past,cables were used in distribution networks in urban areas for the most part with the exception of direct current submarine cables.New developments of high voltage XLPE cables make it possible to use this technology for EHV level applications in transmission networks.Within this paper,mixed network configurations,consisting of overhead lines and high voltage cables,are investigated.An exemplary EHV transmission line with a total length of about 100 km,which is quite typical for Central Europe,has been studied.Several different line combinations are discussed with varied rates between overhead line sections and cable sections length in practice.The length of the cable sections are ranging from several kilometers up to lengths of 100 km.In this paper the work focuses on the transient behavior of combined 400 kV overhead and cable lines during switching processes and lightning impacts.A number of calculations were carried out to get an overview of the transient stress in numerous network nodes along the transmission system.Numerical programs like ATP/EMTP have been used for these simulations.Peak values and wave shapes of the transient voltage stress have been evaluated,based on different systems and within possible combinations.In respect of the insulation coordination and transient stress at network nodes,the voltage-time trends are also analyzed.The combination of high voltage overhead and cable transmission systems,especially such with lengths of more than about 50 km,are making tightened and extended demands to the network design,to the operational management and of course to the network protection also.As an output of this investigations,the results might influence the strategy in running this new type of combined transmission systems.展开更多
Cabled ocean networks with tree or ring topologies play an important role in real-time ocean exploration. Due to the time-consuming need for field maintenance, cable switching technology that can actively switch the p...Cabled ocean networks with tree or ring topologies play an important role in real-time ocean exploration. Due to the time-consuming need for field maintenance, cable switching technology that can actively switch the power on/off on certain branches of the network becomes essential for enhancing the reliability and availability of the network. In this paper, a novel switching-control method is proposed, in which we invert the power transmission polarity and use the current on the power line as the digital signal at low frequency to broadcast information with the address and commands to the network, and the corresponding branching unit (BU) can decode and execute the switching commands. The cable's parasitic parameters, the network scale, and the number of BUs, as the influencing factors of the communication frequency on the power line, are theoretically studied and sim-ulated. An optimized frequency that balances the executing accuracy and rate is calculated and proved on a simulated prototype. The results showed that the cable switching technology with optimized frequency can enhance the switching accuracy and con-figuring rate.展开更多
文摘Recently,switched Ethernet has become an active area of research because of its wide uses in industry.However,its uses have various real-time constraints on data communications.This paper analyzes the performance of the line topology switched Ethernet as a data acquisition network.Network calculus theory,which has been successfully applied to assess the real-time performance of packet-switched networks,is used to analyze the networks.To properly describe the activity of switches,a novel approach of modeling data flows into or out of switches is addressed.Based on our model,a concisely analytical expression of the maximal end-to-end delay in line topology switched Ethernet is derived.Finally,the relative simulation results are demonstrated.These results agree well with the analytical results,and thus they validate the data flow modeling techniques.
基金supported by National Natural Science Foundation of China(Nos.51307141,51077111)by the State Key Laboratory Foundational Research Funds of China(Nos.SKLIPR1302Z,SKLIPR1306)
文摘Based on the transmission line code (TLCODE), a circuit model is developed here for analyses of main switches in the high pulsed-power facilities. With the structure of the ZR main switch as an example, a circuit model topology of the switch is proposed, and in particular, calculation methods of the dynamic inductance and resistance of the switching arc are described. Moreover, a set of closed equations used for calculations of various node voltages are theoretically derived and numericMly discretized. Based on these discrete equations and the Matlab program, a simulation procedure is established for analyses of the ZR main switch. Voltages and currents at different key points are obtained, and comparisons are made with those of a PSpice L-C model. The comparison results show that these two models are perfectly in accord with each other with discrepancy less than 0.1%, which verifies the effectiveness of the TLCODE model to a certain extent.
文摘Introduction: Over the past years, efforts have been made to expand access to antiretroviral combinations (cART) in low-income countries. However, major concerns are noted with drug resistance emergence, as treatment failure result and need to introduce a second line treatment, more expensive and difficult to implement. The objective was to study the incidence of switch to second line, reasons for switch and risk factors using a cohort of people living with HIV in an Ambulatory Treatment Center in Dakar. Methodology: This was a cohort study of people living with HIV under cART from January 2004 to December 2013. Naive patients monitored for at least six months, regardless of their profile and regimen with baseline CD4 counts Results: The median age of the 827 patients included was 44 [IQR = 18 - 78]. The switch to second-line treatment was observed in 72 patients (8.7%) after an average of 38.5 months of follow-up. The overall incidence rate of switch to second line of antiretroviral treatment was 1.59 per 100 persons-years. Most of changes in first-line treatment were motivated by virological failures (n = 60, 83.3%) under treatment with AZT/3TC/NVP (n = 25, 34.7%) or AZT/3TC/EFV21 (29.2%). 9.7% of switch occurred after immunological failure, 1.4% after clinical failure, 4.2% after severe toxicity and 1.4% was not documented. Predictive factors identifying failures at the end of the multivariate analysis were age Conclusions: In total, CTA identified a low incidence rate of treatment failure of the first line of treatment. Associated risk factors were age < 44 years, CD4 counts below 100 cells/mm<sup>3</sup> and high viral load at treatment initiation.
文摘The paper deals with the tests on the first 500 kV compact transmission line. The transmission line stretches from Fangshan Substation to Changping Substation nearby Beijing with a length of 83 km. In order to investigate the characteristics of the transmission line, many tests were performed on the line before and after its operation. The results indicate that all electrical parameters are perfectly identical to the design.
文摘In this paper the transmission line matrix (TLM) method is exploited to evaluate the electromagnetic field distribution over a new radio frequency micro electromechanical system (RF-MEMS). A hybrid symmetrical condensed node is used to analyze S-parameters of the switch in on and off states. Furthermore, the effects of spring zigzag cuts over the bridge are analyzed. Results have authorized that TLM method offers a much faster and more reliable results compare to other numerical methods because of its time domain behavior and transmission line basis.
文摘Packet contention is a key issue in optical packet switch (OPS) networks and finds a viable solution by including optical buffering techniques incorporating fiber delay lines (FDLs) in the switch architecture. The present paper proposes a novel switch architecture for packet contention resolution in synchronous OPS network employing the packet circulation in FDLs in a synchronized manner. A mathematical model for the proposed switch architecture is developed employing packet queuing control to estimate the blocking probability for the incoming traffic. The switch performance is analyzed with a suitable contention resolution al-gorithm through the computer simulation. The simulation results substantiate the proposed model for the switch architecture.
文摘Electrical power transmission is dominated by overhead line systems at present.This is mainly based on more than hundred years of experience of utilities in running overhead lines.Furthermore,overhead lines have proven their operational reliability and functional assurance.In the past,cables were used in distribution networks in urban areas for the most part with the exception of direct current submarine cables.New developments of high voltage XLPE cables make it possible to use this technology for EHV level applications in transmission networks.Within this paper,mixed network configurations,consisting of overhead lines and high voltage cables,are investigated.An exemplary EHV transmission line with a total length of about 100 km,which is quite typical for Central Europe,has been studied.Several different line combinations are discussed with varied rates between overhead line sections and cable sections length in practice.The length of the cable sections are ranging from several kilometers up to lengths of 100 km.In this paper the work focuses on the transient behavior of combined 400 kV overhead and cable lines during switching processes and lightning impacts.A number of calculations were carried out to get an overview of the transient stress in numerous network nodes along the transmission system.Numerical programs like ATP/EMTP have been used for these simulations.Peak values and wave shapes of the transient voltage stress have been evaluated,based on different systems and within possible combinations.In respect of the insulation coordination and transient stress at network nodes,the voltage-time trends are also analyzed.The combination of high voltage overhead and cable transmission systems,especially such with lengths of more than about 50 km,are making tightened and extended demands to the network design,to the operational management and of course to the network protection also.As an output of this investigations,the results might influence the strategy in running this new type of combined transmission systems.
基金Project supported by the National Natural Science Foundation of China(No.51409229)。
文摘Cabled ocean networks with tree or ring topologies play an important role in real-time ocean exploration. Due to the time-consuming need for field maintenance, cable switching technology that can actively switch the power on/off on certain branches of the network becomes essential for enhancing the reliability and availability of the network. In this paper, a novel switching-control method is proposed, in which we invert the power transmission polarity and use the current on the power line as the digital signal at low frequency to broadcast information with the address and commands to the network, and the corresponding branching unit (BU) can decode and execute the switching commands. The cable's parasitic parameters, the network scale, and the number of BUs, as the influencing factors of the communication frequency on the power line, are theoretically studied and sim-ulated. An optimized frequency that balances the executing accuracy and rate is calculated and proved on a simulated prototype. The results showed that the cable switching technology with optimized frequency can enhance the switching accuracy and con-figuring rate.