Different bilayer structures of HfO_(x)/Ti(TiO_(x)) are designed for hafnium-based memory to investigate the switching characteristics. The chemical states in the films and near the interface are characterized by x-ra...Different bilayer structures of HfO_(x)/Ti(TiO_(x)) are designed for hafnium-based memory to investigate the switching characteristics. The chemical states in the films and near the interface are characterized by x-ray photoelectron spectroscopy,and the oxygen vacancies are analyzed. Highly improved on/off ratio(~104) and much uniform switching parameters are observed for bilayer structures compared to single layer HfO_(x) sample, which can be attributed to the modulation of oxygen vacancies at the interface and better control of the growth of filaments. Furthermore, the reliability of the prepared samples is investigated. The carrier conduction behaviors of HfO_(x)-based samples can be attributed to the trapping and de-trapping process of oxygen vacancies and a filamentary model is proposed. In addition, the rupture of filaments during the reset process for the bilayer structures occur at the weak points near the interface by the recovery of oxygen vacancies accompanied by the variation of barrier height. The re-formation of fixed filaments due to the residual filaments as lightning rods results in the better switching performance of the bilayer structure.展开更多
We report that fully transparent resistive random access memory (TRRAM) devices based on ITO/TiO2/ITO sandwich structure, which are prepared by the method of RF magnetron sputtering, exhibit excellent switching stab...We report that fully transparent resistive random access memory (TRRAM) devices based on ITO/TiO2/ITO sandwich structure, which are prepared by the method of RF magnetron sputtering, exhibit excellent switching stability. In the visible region (400 800 nm in wavelength) the TRRAM device has a transmittance of more than 80%. The fabricated TRRAM device shows a bipolar resistance switching behaviour at low voltage, while the retention test and rewrite cycles of more than 300,000 indicate the enhancement of switching capability. The mechanism of resistance switching is further explained by the forming and rupture processes of the filament in the TiO2 layer with the help of more oxygen vacancies which are provided by the transparent ITO electrodes.展开更多
ZnMn_2O_4 films for resistance random access memory(RRAM) were fabricated with different device structures by magnetron sputtering. The effects of electrode on I-V characteristics, resistance switching behavior, end...ZnMn_2O_4 films for resistance random access memory(RRAM) were fabricated with different device structures by magnetron sputtering. The effects of electrode on I-V characteristics, resistance switching behavior, endurance and retention characteristics of ZnMn_2O_4 films were investigated. The ZnMn_2O_4 films, using p-Si and Pt as bottom electrode, exhibit bipolar resistive switching(BRS) behavior dominated by the space-charge-limited conduction(SCLC) mechanism in the high resistance state(HRS) and the filament conduction mechanism in the low resistance state(LRS), but the ZnMn_2O_4 films using n-Si as bottom electrodes exhibit both bipolar and unipolar resistive switching behaviors controlled by the Poole-Frenkel(P-F) conduction mechanism in both HRS and LRS. Ag/ZnMn_2O_4/p-Si device possesses the best endurance and retention characteristics, in which the number of stable repetition switching cycle is over 1000 and the retention time is longer than 106 seconds. However, the highest RHRS/R_(LRS) ratio of 104 and the lowest V_(ON) and V_(OFF) of 3.0 V have been observed in Ag/ZnMn_2O_4/Pt device. Though the Ag/ZnMn_2O_4/n-Si device also possesses the highest RHRS/R_(LRS) ratio of 104, but the highest values of V_(ON),V_(OFF), RHRS and R_(LRS), as well as the poor endurance and retention characteristics.展开更多
A resistance random access memory(RRAM) with a structure of Ag/ZnMn2O4/p-Si was fabricated by magnetron sputtering method. Reliable and repeated switching of the resistance of ZnMn2O4 fi lms was obtained between two...A resistance random access memory(RRAM) with a structure of Ag/ZnMn2O4/p-Si was fabricated by magnetron sputtering method. Reliable and repeated switching of the resistance of ZnMn2O4 fi lms was obtained between two well-defi ned states of high and low resistance with a narrow dispersion and 3V switching voltages. Resistance ratio of the high resistance state and low resistance state was found in the range of around 10^3 orders of magnitude and up to about 10^3 test cycles. The retention time of Ag/ZnMn2O4/p-Si device is longer than 10^6 seconds and the resistance ratio between two states remains higher than 10^3 at room temperature, showing a remarkable reliability performance of the RRAM devices for nonvolatile memory application. The equivalent simulation circuits for HRS(high resistance state) and LRS(low resistance state) were also studied by impedance spectroscopy.展开更多
The fully transparent indium-tin-oxide/BaSnO3/F-doped SnO2 devices that show a stable bipolar resistance switching effect are successfully fabricated. In addition to the transmittance being above 87% for visible light...The fully transparent indium-tin-oxide/BaSnO3/F-doped SnO2 devices that show a stable bipolar resistance switching effect are successfully fabricated. In addition to the transmittance being above 87% for visible light, an initial forming process is unnecessary for the production of transparent memory. Fittings to the current-voltage curves reveal the interfacial conduction in the devices. The first-principles calculation indicates that the oxygen vacancies in cubic BaSnO3 will form the defective energy level below the bottom of conduction band. The field-induced resistance change can be explained based on the change of the interracial Schottky barrier, due to the migration of oxygen vacancies in the vicinity of the interface. This work presents a candidate material BaSnO3 for the application of resistive random access memory to transparent electronics.展开更多
Copper phthalocyanine junctions, fabricated by magnetron sputtering and evaporating methods, show multi-polar (unipolar and bipolar) resistance switching and the memory effect. The multi-polar resistance switching h...Copper phthalocyanine junctions, fabricated by magnetron sputtering and evaporating methods, show multi-polar (unipolar and bipolar) resistance switching and the memory effect. The multi-polar resistance switching has not been observed simultaneously in one organic material before. With both electrodes being cobalt, the unipolar resistance switching is universal. The high resistance state is switched to the low resistance state when the bias reaches the set voltage. Generally, the set voltage increases with the thickness of copper phthalocyanine and decreases with increasing dwell time of bias. Moreover, the low resistance state could be switched to the high resistance state by absorbing the phonon energy. The stability of the low resistance state could be tuned by different electrodes. In Au/copper phthalocyanine/Co system, the low resistance state is far more stable, and the bipolar resistance switching is found. Temperature dependence of electrical transport measurements demonstrates that there are no obvious differences in the electrical transport mechanism before and after the resistance switching. They fit quite well with Mott variable range hopping theory. The effect of A1203 on the resistance switching is excluded by control experiments. The holes trapping and detrapping in copper phthalocyanine layer are responsible for the resistance switching, and the interfacial effect between electrodes and copper phthalocyanine layer affects the memory effect.展开更多
The I-V characteristics of In2O3:SnO2/TiO2/In2O3:SnO2 junctions with different interracial barriers are inves- tigated by comparing experiments. A two-step resistance switching process is found for samples with two ...The I-V characteristics of In2O3:SnO2/TiO2/In2O3:SnO2 junctions with different interracial barriers are inves- tigated by comparing experiments. A two-step resistance switching process is found for samples with two interfacial barriers produced by specific thermal treatment on the interfaces. The nonsynchronous occurrence of conducting filament formation through the oxide bulk and the reduction in the interracial barrier due to the migration of oxygen vacancies under the electric field is supposed to explain the two-step resistive switching process. The unique switching properties of the device, based on interracial barrier engineering, could be exploited for novel applications in nonvolatile memory devices.展开更多
Electric-field-induced resistance switching (RS) phenomena have been studied for over 60 years in metal/dielectrics/metal structures. In these experiments a wide range of dielectrics have been studied including bina...Electric-field-induced resistance switching (RS) phenomena have been studied for over 60 years in metal/dielectrics/metal structures. In these experiments a wide range of dielectrics have been studied including binary transition metal oxides, perovskite oxides, chalcogenides, carbon- and silicon-based materials, as well as organic materials. RS phenomena can be used to store information and offer an attractive performance, which encompasses fast switching speeds, high scalability, and the desirable compatibility with Si-based complementary metal-oxide-semiconductor fabrication. This is promising for nonvolatile memory technology, i.e., resistance random access memory (RRAM). However, a comprehensive understanding of the underlying mechanism is still lacking. This impedes faster product development as well as accurate assessment of the device performance potential. Generally speaking, RS occurs not in the entire dielectric but only in a small, confined region, which results from the local variation of conductivity in dielectrics. In this review, we focus on the RS in oxides with such an inhomogeneous conductivity. According to the origin of the conductivity inhomogeneity, the RS phenomena and their working mechanism are reviewed by dividing them into two aspects: interface RS, based on the change of contact resistance at metal/oxide interface due to the change of Schottky barrier and interface chemical layer, and bulk RS, realized by the formation, connection, and disconnection of conductive channels in the oxides. Finally the current challenges of RS investigation and the potential improvement of the RS performance for the nonvolatile memories are discussed.展开更多
La0.67Ca0.33MnO3 thin films are fabricated on fluorine-doped tin oxide conducting glass substrates by a pulsed laser deposition technique with SrTiO3 used as a buffer layer. The current-voltage characteristics of the ...La0.67Ca0.33MnO3 thin films are fabricated on fluorine-doped tin oxide conducting glass substrates by a pulsed laser deposition technique with SrTiO3 used as a buffer layer. The current-voltage characteristics of the heterojunetions exhibit an asymmetric and resistance switching behaviour. A homogeneous interface-type conduction mechanism is also reported using impedance spectroscopy. The spatial homogeneity of the charge carrier distribution leads to field- induced potential-barrier change at the Au-La0.67Ca0.33MnO3 interface and a concomitant resistance switching effect. The ratio of the high resistance state to the low resistance state is found to be as high as 1.3 x 10^4% by simulating the AC electric field. This colossal resistance switching effect will greatly improve the signal-to-noise ratio in nonvolatile memory applications.展开更多
Electric-field control of perpendicular magnetic anisotropy(PMA) is a feasible way to manipulate perpendicular magnetization,which is of great importance for realizing energy-efficient spintronics.Here,we propose a no...Electric-field control of perpendicular magnetic anisotropy(PMA) is a feasible way to manipulate perpendicular magnetization,which is of great importance for realizing energy-efficient spintronics.Here,we propose a novel approach to accomplish this task at room temperature by resistive switching(RS) via electrochemical metallization(ECM) in a device with the stack of Si/SiO_(2)/Ta/Pt/Ag/Mn-doped ZnO(MZO)/Pt/Co/Pt/ITO.By applying certain voltages,the device could be set at high-resistance-state(HRS) and low-resistance-state(LRS),accompanied with a larger and a smaller coercivity(H_(C)),respectively,which demonstrates a nonvolatile E-field control of PMA.Based on our previous studies and the present control experiments,the electric modulation of PMA can be briefly explained as follows.At LRS,the Ag conductive filaments form and pass through the entire MZO layer and finally reach the Pt/Co/Pt sandwich,leading to weakening of PMA and reduction of H_(C).In contrast,at HRS,most of the Ag filaments dissolve and leave away from the Pt/Co/Pt sandwich,causing partial recovery of PMA and an increase of H_(C).This work provides a new clue to designing low-power spintronic devices based on PMA films.展开更多
Resistive switching(RS)devices have great application prospects in the emerging memory field and neuromorphic field,but their stability and unclear RS mechanism limit their relevant applications.In this work,we constr...Resistive switching(RS)devices have great application prospects in the emerging memory field and neuromorphic field,but their stability and unclear RS mechanism limit their relevant applications.In this work,we construct a hydrogenated Au/SnO_(2)nanowire(NW)/Au device with two back-to-back Schottky diodes and investigate the RS characteristics in air and vacuum.We find that the Ion/Io ff ratio increases from 20 to 10^(4)when the read voltage decreases from 3.1 V to^(-1)V under the condition of electric field.Moreover,the rectification ratio can reach as high as 10^4owing to oxygen ion migration modulated by the electric field.The nanodevice also shows non-volatile resistive memory characteristic.The RS mechanism is clarified based on the changes of the Schottky barrier width and height at the interface of Au/SnO_(2)NW/Au device.Our results provide a strategy for designing high-performance memristive devices based on SnO_(2)NWs.展开更多
Owing to the advantages of simple structure,low power consumption and high-density integration,memristors or memristive devices are attracting increasing attention in the fields such as next generation non-volatile me...Owing to the advantages of simple structure,low power consumption and high-density integration,memristors or memristive devices are attracting increasing attention in the fields such as next generation non-volatile memories,neuromorphic computation and data encryption.However,the deposition of memristive films often requires expensive equipment,strict vacuum conditions,high energy consumption,and extended processing times.In contrast,electrochemical anodizing can produce metal oxide films quickly(e.g.10 s) under ambient conditions.By means of the anodizing technique,oxide films,oxide nanotubes,nanowires and nanodots can be fabricated to prepare memristors.Oxide film thickness,nanostructures,defect concentrations,etc,can be varied to regulate device performances by adjusting oxidation parameters such as voltage,current and time.Thus memristors fabricated by the anodic oxidation technique can achieve high device consistency,low variation,and ultrahigh yield rate.This article provides a comprehensive review of the research progress in the field of anodic oxidation assisted fabrication of memristors.Firstly,the principle of anodic oxidation is introduced;then,different types of memristors produced by anodic oxidation and their applications are presented;finally,features and challenges of anodic oxidation for memristor production are elaborated.展开更多
Artificial synapse inspired by the biological brain has great potential in the field of neuromorphic computing and artificial intelligence.The memristor is an ideal artificial synaptic device with fast operation and g...Artificial synapse inspired by the biological brain has great potential in the field of neuromorphic computing and artificial intelligence.The memristor is an ideal artificial synaptic device with fast operation and good tolerance.Here,we have prepared a memristor device with Au/CsPbBr_(3)/ITO structure.The memristor device exhibits resistance switching behavior,the high and low resistance states no obvious decline after 400 switching times.The memristor device is stimulated by voltage pulses to simulate biological synaptic plasticity,such as long-term potentiation,long-term depression,pair-pulse facilitation,short-term depression,and short-term potentiation.The transformation from short-term memory to long-term memory is achieved by changing the stimulation frequency.In addition,a convolutional neural network was constructed to train/recognize MNIST handwritten data sets;a distinguished recognition accuracy of~96.7%on the digital image was obtained in 100 epochs,which is more accurate than other memristor-based neural networks.These results show that the memristor device based on CsPbBr3 has immense potential in the neuromorphic computing system.展开更多
Organic semiconducting/ferroelectric blend films attracted much attention due to their electrical bistability and rectification properties and thereof the potential in resistive memory devices. Blend films were usuall...Organic semiconducting/ferroelectric blend films attracted much attention due to their electrical bistability and rectification properties and thereof the potential in resistive memory devices. Blend films were usually deposited from solution, during which phase separation oc- curred, resulting in discrete semiconducting phase whose electrical property was modulated by surrounding ferroelectric phase. However, phase separation resulted in rough surface and thus large leakage current. To further improve electrical properties of such blend films, poly(methyl metacrylate) (PMMA) was introduced as additive into P3HT/P(VDF-TrFE) semiconducting/ferroelectric blend films in this work. It indicated that small amount of PMMA addition could effectively enhance the electrical stability to both large electrical stress and electrical fatigue and further improve retention performance. Overmuch PMMA addition tended to result in the loss of resistive switching property. A model on the configuration of three components was also put forward to well understand our experimental observations.展开更多
The resistive switching characteristics of TiO_2 nanowire networks directly grown on Ti foil by a single-step hydrothermal technique are discussed in this paper. The Ti foil serves as the supply of Ti atoms for growth...The resistive switching characteristics of TiO_2 nanowire networks directly grown on Ti foil by a single-step hydrothermal technique are discussed in this paper. The Ti foil serves as the supply of Ti atoms for growth of the TiO_2 nanowires, making the preparation straightforward. It also acts as a bottom electrode for the device. A top Al electrode was fabricated by e-beam evaporation process. The Al/TiO_2 nanowire networks/Ti device fabricated in this way displayed a highly repeatable and electroforming-free bipolar resistive behavior with retention for more than 10~4 s and an OFF/ON ratio of approximately 70. The switching mechanism of this Al/TiO_2 nanowire networks/Ti device is suggested to arise from the migration of oxygen vacancies under applied electric field. This provides a facile way to obtain metal oxide nanowire-based Re RAM device in the future.展开更多
We investigate the resistive switching characteristics of a Cu/VOx/W structure. The VOx film is deposited by radio- frequency magnetron sputtering on the Cu electrode as a dielectric layer. The prepared VOx sample str...We investigate the resistive switching characteristics of a Cu/VOx/W structure. The VOx film is deposited by radio- frequency magnetron sputtering on the Cu electrode as a dielectric layer. The prepared VOx sample structure shows reproducible bipolar resistive switching characteristics with ultra-low switching voltage and good cycling endurance. A modified physical model is proposed to elucidate the typical switching behavior of the vanadium oxide-based resistive switching memory with a sudden resistance transition, and the self-saturation of reset current as a function of compliance current is observed in the test, which is attributed to the conducting mechanism is discussed in detail. growth pattern of the conducting filaments. Additionally, the related展开更多
The resistive switching memory characteristics of 100 randomly measured devices were observed by reducing device size in a Cr/Cr Ox/Ti Ox/Ti N structure for the first time.Transmission electron microscope image confir...The resistive switching memory characteristics of 100 randomly measured devices were observed by reducing device size in a Cr/Cr Ox/Ti Ox/Ti N structure for the first time.Transmission electron microscope image confirmed a viahole size of 0.4 lm.A 3-nm-thick amorphous Ti Oxwith 4-nm-thick polycrystalline Cr Oxlayer was observed.A small 0.4-lm device shows reversible resistive switching at a current compliance of 300 l A as compared to other larger size devices(1–8 lm)owing to reduction of leakage current through the Ti Oxlayer.Good device-to-device uniformity with a yield of[85%has been clarified by weibull distribution owing to higher slope/shape factor.The switching mechanism is based on oxygen vacancy migration from the Cr Oxlayer and filament formation/rupture in the Ti Oxlayer.Long read pulse endurance of[105cycles,good data retention of 6 h,and a program/erase speed of 1 ls pulse width have been obtained.展开更多
In this study, the unipolar resistive switching (URS) and bipolar resistive switching (BRS) are demonstrated to be coexistent in the Ag/ZnO/Pt memory device, and both modes are observed to strongly depend on the p...In this study, the unipolar resistive switching (URS) and bipolar resistive switching (BRS) are demonstrated to be coexistent in the Ag/ZnO/Pt memory device, and both modes are observed to strongly depend on the polarity of forming voltage. The mechanisms of the URS and BRS behaviors could be attributed to the electric-field-induced migration of oxygen vacancies (Vo) and metal-Ag conducting filaments (CFs) respectively, which are confirmed by investigating the temperature dependences of low resistance states in both modes. Furthermore, we compare the resistive switching (RS) characteristics (e.g., forming and switching voltages, reset current and resistance states) between these two modes based on Vo- and Ag-CFs. The BRS mode shows better switching uniformity and lower power than the URS mode. Both of these modes exhibit good RS performances, including good retention, reliable cycling and high-speed switching. The result indicates that the coexistence of URS and BRS behaviors in a single device has great potential applications in future nonvolatile multi-level memory.展开更多
A new device has been realized using flip-chip joining two printed circuit boards(PCBs) on which zinc oxide(ZnO) nanowires were synthesized. Energy dispersive X-ray measurement has been conducted for the ZnO nanowires...A new device has been realized using flip-chip joining two printed circuit boards(PCBs) on which zinc oxide(ZnO) nanowires were synthesized. Energy dispersive X-ray measurement has been conducted for the ZnO nanowires, confirming that Cu elements have been diffused into the nanowires during the chemical growth process. From I-V measurements, this Cu/ZnO nanowire/Cu structure exhibits a resistive tuning behaviour, which varies greatly with the frequency of the applied sinusoidal source.展开更多
In this paper, a WO3-based resistive random access memory device composed of a thin film of WO3 sandwiched between a copper top and a platinum bottom electrodes is fabricated by electron beam evaporation at room tempe...In this paper, a WO3-based resistive random access memory device composed of a thin film of WO3 sandwiched between a copper top and a platinum bottom electrodes is fabricated by electron beam evaporation at room temperature. The reproducible resistive switching, low power consumption, multilevel storage possibility, and good data retention characteristics demonstrate that the Cu/WO3/Pt memory device is very promising for future nonvolatile memory applications. The formation and rupture of localised conductive filaments is suggested to be responsible for the observed resistive switching behaviours.展开更多
基金financially supported by the National Natural Science Foundation of China (Grant No.51802025)the Natural Science Basic Research Plan in Shaanxi Province of China (Grant No.2020JQ-384)。
文摘Different bilayer structures of HfO_(x)/Ti(TiO_(x)) are designed for hafnium-based memory to investigate the switching characteristics. The chemical states in the films and near the interface are characterized by x-ray photoelectron spectroscopy,and the oxygen vacancies are analyzed. Highly improved on/off ratio(~104) and much uniform switching parameters are observed for bilayer structures compared to single layer HfO_(x) sample, which can be attributed to the modulation of oxygen vacancies at the interface and better control of the growth of filaments. Furthermore, the reliability of the prepared samples is investigated. The carrier conduction behaviors of HfO_(x)-based samples can be attributed to the trapping and de-trapping process of oxygen vacancies and a filamentary model is proposed. In addition, the rupture of filaments during the reset process for the bilayer structures occur at the weak points near the interface by the recovery of oxygen vacancies accompanied by the variation of barrier height. The re-formation of fixed filaments due to the residual filaments as lightning rods results in the better switching performance of the bilayer structure.
基金Project supported by the National Basic Research Program of China (Grant No. 2007CB925002)the National High Technology Research and Development Program of China (Grant No. 2008AA031401)and Chinese Academy of Sciences
文摘We report that fully transparent resistive random access memory (TRRAM) devices based on ITO/TiO2/ITO sandwich structure, which are prepared by the method of RF magnetron sputtering, exhibit excellent switching stability. In the visible region (400 800 nm in wavelength) the TRRAM device has a transmittance of more than 80%. The fabricated TRRAM device shows a bipolar resistance switching behaviour at low voltage, while the retention test and rewrite cycles of more than 300,000 indicate the enhancement of switching capability. The mechanism of resistance switching is further explained by the forming and rupture processes of the filament in the TiO2 layer with the help of more oxygen vacancies which are provided by the transparent ITO electrodes.
基金Funded by the National Natural Science Foundation of China(51262003)the Guangxi Key Laboratory of Information Materials(Guilin University of Electronic Technology),China(No.1110908-10-Z)
文摘ZnMn_2O_4 films for resistance random access memory(RRAM) were fabricated with different device structures by magnetron sputtering. The effects of electrode on I-V characteristics, resistance switching behavior, endurance and retention characteristics of ZnMn_2O_4 films were investigated. The ZnMn_2O_4 films, using p-Si and Pt as bottom electrode, exhibit bipolar resistive switching(BRS) behavior dominated by the space-charge-limited conduction(SCLC) mechanism in the high resistance state(HRS) and the filament conduction mechanism in the low resistance state(LRS), but the ZnMn_2O_4 films using n-Si as bottom electrodes exhibit both bipolar and unipolar resistive switching behaviors controlled by the Poole-Frenkel(P-F) conduction mechanism in both HRS and LRS. Ag/ZnMn_2O_4/p-Si device possesses the best endurance and retention characteristics, in which the number of stable repetition switching cycle is over 1000 and the retention time is longer than 106 seconds. However, the highest RHRS/R_(LRS) ratio of 104 and the lowest V_(ON) and V_(OFF) of 3.0 V have been observed in Ag/ZnMn_2O_4/Pt device. Though the Ag/ZnMn_2O_4/n-Si device also possesses the highest RHRS/R_(LRS) ratio of 104, but the highest values of V_(ON),V_(OFF), RHRS and R_(LRS), as well as the poor endurance and retention characteristics.
基金Funded by the National Natural Science Foundation of China(51262003)the Guangxi Key Laboratory of Information Materials(Guilin University of Electronic Technology),China(No.1110908-10-Z)
文摘A resistance random access memory(RRAM) with a structure of Ag/ZnMn2O4/p-Si was fabricated by magnetron sputtering method. Reliable and repeated switching of the resistance of ZnMn2O4 fi lms was obtained between two well-defi ned states of high and low resistance with a narrow dispersion and 3V switching voltages. Resistance ratio of the high resistance state and low resistance state was found in the range of around 10^3 orders of magnitude and up to about 10^3 test cycles. The retention time of Ag/ZnMn2O4/p-Si device is longer than 10^6 seconds and the resistance ratio between two states remains higher than 10^3 at room temperature, showing a remarkable reliability performance of the RRAM devices for nonvolatile memory application. The equivalent simulation circuits for HRS(high resistance state) and LRS(low resistance state) were also studied by impedance spectroscopy.
基金Project supported by the National Natural Science Foundation of China(Grant Nos.11174135 and 60976016)the National 973 Project,China(Gant No.0213117005)+3 种基金the State Key Program for Basic Research of China(Grant No.2010CB630704)the Science Foundation of Henan Province,China(Grant No.14A430020)the Science Foundation of Henan University,China(Grant No.SBGJ090503)China Postdoctoral Science Foundation(Grant No.2012M511250)
文摘The fully transparent indium-tin-oxide/BaSnO3/F-doped SnO2 devices that show a stable bipolar resistance switching effect are successfully fabricated. In addition to the transmittance being above 87% for visible light, an initial forming process is unnecessary for the production of transparent memory. Fittings to the current-voltage curves reveal the interfacial conduction in the devices. The first-principles calculation indicates that the oxygen vacancies in cubic BaSnO3 will form the defective energy level below the bottom of conduction band. The field-induced resistance change can be explained based on the change of the interracial Schottky barrier, due to the migration of oxygen vacancies in the vicinity of the interface. This work presents a candidate material BaSnO3 for the application of resistive random access memory to transparent electronics.
基金Project supported by the National Natural Science Foundation of China(Grant Nos.50971080,11174183,and 50901043)the Program for New Century Excellent Talents of China(Grant No.NCET-10-0541)+3 种基金the Scientific Research Foundation for Returned Overseas Chinese Scholars,111 Project(Grant No.B13029)the Natural Science Foundation of Shandong Province,China(Grant No.JQ201201)the Doctorate Foundation of Shandong Province,China(Grant No.BS2013CL042)the Young Scientists Fund of the National Natural Science Foundation of China(Grant No.11204164)
文摘Copper phthalocyanine junctions, fabricated by magnetron sputtering and evaporating methods, show multi-polar (unipolar and bipolar) resistance switching and the memory effect. The multi-polar resistance switching has not been observed simultaneously in one organic material before. With both electrodes being cobalt, the unipolar resistance switching is universal. The high resistance state is switched to the low resistance state when the bias reaches the set voltage. Generally, the set voltage increases with the thickness of copper phthalocyanine and decreases with increasing dwell time of bias. Moreover, the low resistance state could be switched to the high resistance state by absorbing the phonon energy. The stability of the low resistance state could be tuned by different electrodes. In Au/copper phthalocyanine/Co system, the low resistance state is far more stable, and the bipolar resistance switching is found. Temperature dependence of electrical transport measurements demonstrates that there are no obvious differences in the electrical transport mechanism before and after the resistance switching. They fit quite well with Mott variable range hopping theory. The effect of A1203 on the resistance switching is excluded by control experiments. The holes trapping and detrapping in copper phthalocyanine layer are responsible for the resistance switching, and the interfacial effect between electrodes and copper phthalocyanine layer affects the memory effect.
基金supported by the National Basic Research Program of China (Grant No. 2009CB930803)the National Natural Science Foundation of China (Grant No. 10834012)the Innovation Foundation of the Chinese Academy of Sciences (Grant No. KJCX2-YW-W24)
文摘The I-V characteristics of In2O3:SnO2/TiO2/In2O3:SnO2 junctions with different interracial barriers are inves- tigated by comparing experiments. A two-step resistance switching process is found for samples with two interfacial barriers produced by specific thermal treatment on the interfaces. The nonsynchronous occurrence of conducting filament formation through the oxide bulk and the reduction in the interracial barrier due to the migration of oxygen vacancies under the electric field is supposed to explain the two-step resistive switching process. The unique switching properties of the device, based on interracial barrier engineering, could be exploited for novel applications in nonvolatile memory devices.
基金supported by the National Natural Science Foundation of China (Grant Nos. 11004235,11274363,51072224,and 11134007)the National Basic Research Program of China (Grant No. 2009CB930803)the Alexander von Humboldt Foundation (for S.D.S)
文摘Electric-field-induced resistance switching (RS) phenomena have been studied for over 60 years in metal/dielectrics/metal structures. In these experiments a wide range of dielectrics have been studied including binary transition metal oxides, perovskite oxides, chalcogenides, carbon- and silicon-based materials, as well as organic materials. RS phenomena can be used to store information and offer an attractive performance, which encompasses fast switching speeds, high scalability, and the desirable compatibility with Si-based complementary metal-oxide-semiconductor fabrication. This is promising for nonvolatile memory technology, i.e., resistance random access memory (RRAM). However, a comprehensive understanding of the underlying mechanism is still lacking. This impedes faster product development as well as accurate assessment of the device performance potential. Generally speaking, RS occurs not in the entire dielectric but only in a small, confined region, which results from the local variation of conductivity in dielectrics. In this review, we focus on the RS in oxides with such an inhomogeneous conductivity. According to the origin of the conductivity inhomogeneity, the RS phenomena and their working mechanism are reviewed by dividing them into two aspects: interface RS, based on the change of contact resistance at metal/oxide interface due to the change of Schottky barrier and interface chemical layer, and bulk RS, realized by the formation, connection, and disconnection of conductive channels in the oxides. Finally the current challenges of RS investigation and the potential improvement of the RS performance for the nonvolatile memories are discussed.
基金supported by the National Natural Science Foundation of China (Grant No. 60976016)the Program for Innovative Research Team in Science and Technology in University of Henan Province (IRTSTHN),China (Grant No. 2012IRTSTHN004)the Research Program of Henan University, China (Grant No. SBGJ090503)
文摘La0.67Ca0.33MnO3 thin films are fabricated on fluorine-doped tin oxide conducting glass substrates by a pulsed laser deposition technique with SrTiO3 used as a buffer layer. The current-voltage characteristics of the heterojunetions exhibit an asymmetric and resistance switching behaviour. A homogeneous interface-type conduction mechanism is also reported using impedance spectroscopy. The spatial homogeneity of the charge carrier distribution leads to field- induced potential-barrier change at the Au-La0.67Ca0.33MnO3 interface and a concomitant resistance switching effect. The ratio of the high resistance state to the low resistance state is found to be as high as 1.3 x 10^4% by simulating the AC electric field. This colossal resistance switching effect will greatly improve the signal-to-noise ratio in nonvolatile memory applications.
基金Project supported by the National Key Research and Development Program of China (Grant No. 2022YFA1403602)the National Natural Science Foundation of China (Grant Nos. 51971109, 52025012, and 52001169)。
文摘Electric-field control of perpendicular magnetic anisotropy(PMA) is a feasible way to manipulate perpendicular magnetization,which is of great importance for realizing energy-efficient spintronics.Here,we propose a novel approach to accomplish this task at room temperature by resistive switching(RS) via electrochemical metallization(ECM) in a device with the stack of Si/SiO_(2)/Ta/Pt/Ag/Mn-doped ZnO(MZO)/Pt/Co/Pt/ITO.By applying certain voltages,the device could be set at high-resistance-state(HRS) and low-resistance-state(LRS),accompanied with a larger and a smaller coercivity(H_(C)),respectively,which demonstrates a nonvolatile E-field control of PMA.Based on our previous studies and the present control experiments,the electric modulation of PMA can be briefly explained as follows.At LRS,the Ag conductive filaments form and pass through the entire MZO layer and finally reach the Pt/Co/Pt sandwich,leading to weakening of PMA and reduction of H_(C).In contrast,at HRS,most of the Ag filaments dissolve and leave away from the Pt/Co/Pt sandwich,causing partial recovery of PMA and an increase of H_(C).This work provides a new clue to designing low-power spintronic devices based on PMA films.
基金Chenzhou Science and Technology Plan Project of China(Grant No.ZDYF2020159)Scientific Research Project of Hunan Provincial Department of Education(Grant No.21C0708)。
文摘Resistive switching(RS)devices have great application prospects in the emerging memory field and neuromorphic field,but their stability and unclear RS mechanism limit their relevant applications.In this work,we construct a hydrogenated Au/SnO_(2)nanowire(NW)/Au device with two back-to-back Schottky diodes and investigate the RS characteristics in air and vacuum.We find that the Ion/Io ff ratio increases from 20 to 10^(4)when the read voltage decreases from 3.1 V to^(-1)V under the condition of electric field.Moreover,the rectification ratio can reach as high as 10^4owing to oxygen ion migration modulated by the electric field.The nanodevice also shows non-volatile resistive memory characteristic.The RS mechanism is clarified based on the changes of the Schottky barrier width and height at the interface of Au/SnO_(2)NW/Au device.Our results provide a strategy for designing high-performance memristive devices based on SnO_(2)NWs.
基金supported by the National Key Research and Development Program of China (Grant No.2018YFE0203802)Natural Science Foundation of Hubei Province, China (Grant No.2022CFA031)Dongguan Innovative Research Team Program (2020607101007)。
文摘Owing to the advantages of simple structure,low power consumption and high-density integration,memristors or memristive devices are attracting increasing attention in the fields such as next generation non-volatile memories,neuromorphic computation and data encryption.However,the deposition of memristive films often requires expensive equipment,strict vacuum conditions,high energy consumption,and extended processing times.In contrast,electrochemical anodizing can produce metal oxide films quickly(e.g.10 s) under ambient conditions.By means of the anodizing technique,oxide films,oxide nanotubes,nanowires and nanodots can be fabricated to prepare memristors.Oxide film thickness,nanostructures,defect concentrations,etc,can be varied to regulate device performances by adjusting oxidation parameters such as voltage,current and time.Thus memristors fabricated by the anodic oxidation technique can achieve high device consistency,low variation,and ultrahigh yield rate.This article provides a comprehensive review of the research progress in the field of anodic oxidation assisted fabrication of memristors.Firstly,the principle of anodic oxidation is introduced;then,different types of memristors produced by anodic oxidation and their applications are presented;finally,features and challenges of anodic oxidation for memristor production are elaborated.
基金sponsored by the National Natural Science Foundation of China(Grant Nos 11574057,and 12172093)the Guangdong Basic and Applied Basic Research Foundation(Grant No.2021A1515012607).
文摘Artificial synapse inspired by the biological brain has great potential in the field of neuromorphic computing and artificial intelligence.The memristor is an ideal artificial synaptic device with fast operation and good tolerance.Here,we have prepared a memristor device with Au/CsPbBr_(3)/ITO structure.The memristor device exhibits resistance switching behavior,the high and low resistance states no obvious decline after 400 switching times.The memristor device is stimulated by voltage pulses to simulate biological synaptic plasticity,such as long-term potentiation,long-term depression,pair-pulse facilitation,short-term depression,and short-term potentiation.The transformation from short-term memory to long-term memory is achieved by changing the stimulation frequency.In addition,a convolutional neural network was constructed to train/recognize MNIST handwritten data sets;a distinguished recognition accuracy of~96.7%on the digital image was obtained in 100 epochs,which is more accurate than other memristor-based neural networks.These results show that the memristor device based on CsPbBr3 has immense potential in the neuromorphic computing system.
基金This work was supported by the STCSM (No.13NMI400600) and the National Natural Science Foundation of China (No.U1430106).
文摘Organic semiconducting/ferroelectric blend films attracted much attention due to their electrical bistability and rectification properties and thereof the potential in resistive memory devices. Blend films were usually deposited from solution, during which phase separation oc- curred, resulting in discrete semiconducting phase whose electrical property was modulated by surrounding ferroelectric phase. However, phase separation resulted in rough surface and thus large leakage current. To further improve electrical properties of such blend films, poly(methyl metacrylate) (PMMA) was introduced as additive into P3HT/P(VDF-TrFE) semiconducting/ferroelectric blend films in this work. It indicated that small amount of PMMA addition could effectively enhance the electrical stability to both large electrical stress and electrical fatigue and further improve retention performance. Overmuch PMMA addition tended to result in the loss of resistive switching property. A model on the configuration of three components was also put forward to well understand our experimental observations.
基金supported by the Natural Sciences and Engineering Research Council(NSERC)of CanadaThe financial support of the State Scholarship Fund of China(No.201506160061)
文摘The resistive switching characteristics of TiO_2 nanowire networks directly grown on Ti foil by a single-step hydrothermal technique are discussed in this paper. The Ti foil serves as the supply of Ti atoms for growth of the TiO_2 nanowires, making the preparation straightforward. It also acts as a bottom electrode for the device. A top Al electrode was fabricated by e-beam evaporation process. The Al/TiO_2 nanowire networks/Ti device fabricated in this way displayed a highly repeatable and electroforming-free bipolar resistive behavior with retention for more than 10~4 s and an OFF/ON ratio of approximately 70. The switching mechanism of this Al/TiO_2 nanowire networks/Ti device is suggested to arise from the migration of oxygen vacancies under applied electric field. This provides a facile way to obtain metal oxide nanowire-based Re RAM device in the future.
基金supported by the National Natural Science Foundation of China (Grant Nos. 61274113 and 11204212)the Program for New Century Excellent Talents in University of Ministry of Education of China (Grant No. NCET-11-1064)+1 种基金the Natural Science Foundation of Tianjin City, China (Grant Nos. 10SYSYJC27700, 13JCYBJC15700, and 10ZCKFGX01200)the Science and Technology Development Funds of Universities and Colleges of Tianjin City, China (Grant No. 20100703)
文摘We investigate the resistive switching characteristics of a Cu/VOx/W structure. The VOx film is deposited by radio- frequency magnetron sputtering on the Cu electrode as a dielectric layer. The prepared VOx sample structure shows reproducible bipolar resistive switching characteristics with ultra-low switching voltage and good cycling endurance. A modified physical model is proposed to elucidate the typical switching behavior of the vanadium oxide-based resistive switching memory with a sudden resistance transition, and the self-saturation of reset current as a function of compliance current is observed in the test, which is attributed to the conducting mechanism is discussed in detail. growth pattern of the conducting filaments. Additionally, the related
基金supported by Ministry of Sci ence and Technology(MOST)Taiwan,under Contract no.NSC-1022221-E-182-057-MY2grateful to EOL/ITRI Hsinchu,Taiwan for their experimental support
文摘The resistive switching memory characteristics of 100 randomly measured devices were observed by reducing device size in a Cr/Cr Ox/Ti Ox/Ti N structure for the first time.Transmission electron microscope image confirmed a viahole size of 0.4 lm.A 3-nm-thick amorphous Ti Oxwith 4-nm-thick polycrystalline Cr Oxlayer was observed.A small 0.4-lm device shows reversible resistive switching at a current compliance of 300 l A as compared to other larger size devices(1–8 lm)owing to reduction of leakage current through the Ti Oxlayer.Good device-to-device uniformity with a yield of[85%has been clarified by weibull distribution owing to higher slope/shape factor.The switching mechanism is based on oxygen vacancy migration from the Cr Oxlayer and filament formation/rupture in the Ti Oxlayer.Long read pulse endurance of[105cycles,good data retention of 6 h,and a program/erase speed of 1 ls pulse width have been obtained.
基金Project supported by the National Natural Science Foundation of China for Excellent Young Scholars(Grant No.51422201)the National Natural Science Foundation of China(Grant Nos.51172041,51372035,11304035,61574031,and 61404026)+4 种基金the National Basic Research Program of China(Grant No.2012CB933703)the"111"Project,China(Grant No.B13013)the Fund from Jilin Province,China(Grant Nos.20140520106JH and 20140201008GX)the Research Fund for the Doctoral Program of Higher Education,China(Grant No.20130043110004)the Fundamental Research Funds for the Central Universities,China(Grant Nos.2412015KJ008 and 2412016KJ003)
文摘In this study, the unipolar resistive switching (URS) and bipolar resistive switching (BRS) are demonstrated to be coexistent in the Ag/ZnO/Pt memory device, and both modes are observed to strongly depend on the polarity of forming voltage. The mechanisms of the URS and BRS behaviors could be attributed to the electric-field-induced migration of oxygen vacancies (Vo) and metal-Ag conducting filaments (CFs) respectively, which are confirmed by investigating the temperature dependences of low resistance states in both modes. Furthermore, we compare the resistive switching (RS) characteristics (e.g., forming and switching voltages, reset current and resistance states) between these two modes based on Vo- and Ag-CFs. The BRS mode shows better switching uniformity and lower power than the URS mode. Both of these modes exhibit good RS performances, including good retention, reliable cycling and high-speed switching. The result indicates that the coexistence of URS and BRS behaviors in a single device has great potential applications in future nonvolatile multi-level memory.
基金the UK Leverhulme Trust, College of Engineering and Department of Research and Innovation of Swansea University for financial support
文摘A new device has been realized using flip-chip joining two printed circuit boards(PCBs) on which zinc oxide(ZnO) nanowires were synthesized. Energy dispersive X-ray measurement has been conducted for the ZnO nanowires, confirming that Cu elements have been diffused into the nanowires during the chemical growth process. From I-V measurements, this Cu/ZnO nanowire/Cu structure exhibits a resistive tuning behaviour, which varies greatly with the frequency of the applied sinusoidal source.
基金Project supported by the National Basic Research Program of China(Grant Nos.2008CB925002 and 2010CB934200)the National Natural Science Foundation of China(Grant Nos.60825403 and 50972160)the National High Technology Research and Development Program of China(Grant No.2009AA03Z306)
文摘In this paper, a WO3-based resistive random access memory device composed of a thin film of WO3 sandwiched between a copper top and a platinum bottom electrodes is fabricated by electron beam evaporation at room temperature. The reproducible resistive switching, low power consumption, multilevel storage possibility, and good data retention characteristics demonstrate that the Cu/WO3/Pt memory device is very promising for future nonvolatile memory applications. The formation and rupture of localised conductive filaments is suggested to be responsible for the observed resistive switching behaviours.