Many organizations have insisted on protecting the cloud server from the outside,although the risks of attacking the cloud server are mostly from the inside.There are many algorithms designed to protect the cloud serv...Many organizations have insisted on protecting the cloud server from the outside,although the risks of attacking the cloud server are mostly from the inside.There are many algorithms designed to protect the cloud server from attacks that have been able to protect the cloud server attacks.Still,the attackers have designed even better mechanisms to break these security algorithms.Cloud cryptography is the best data protection algorithm that exchanges data between authentic users.In this article,one symmetric cryptography algorithm will be designed to secure cloud server data,used to send and receive cloud server data securely.A double encryption algorithm will be implemented to send data in a secure format.First,the XOR function will be applied to plain text,and then salt technique will be used.Finally,a reversing mechanism will be implemented on that data to provide more data security.To decrypt data,the cipher text will be reversed,salt will be removed,andXORwill be implemented.At the end of the paper,the proposed algorithm will be compared with other algorithms,and it will conclude how much better the existing algorithm is than other algorithms.展开更多
This study applies the diatonic chord in music theory,utilization rate,and the close relationship between the main chord system,the dominant chord system,and the subordinate chord system.From the perspective of music ...This study applies the diatonic chord in music theory,utilization rate,and the close relationship between the main chord system,the dominant chord system,and the subordinate chord system.From the perspective of music theory,the computer can automatically and quickly analyze the music,and establish a set of algorithms for configuring the chord accompaniment for the main melody,called the symmetrical circle offifths algorithm,SCFA(Symmetrical Circle of Fifths Algorithm).SCFA can immediately confirm the key,perform harmony analysis,configure chord accompaniment for the main melody,and effectively and correctly complete any given melody or interval.It can also quickly analyze and correctly configure the chord accompaniment for any MIDI(Musical Instrument Digital Interface)music,enriching the musicality of the music.It can also allow scorers or computer music creators to quickly deconstruct the harmony configuration of the melody.Through the measurement of bio-feedback sensor HRV(Heart Rate Variability),it can achieve a relaxing music healing effect.展开更多
The composite field multiplication is an important and complex module in symmetric cipher algorithms, and its realization performance directly restricts the processing speed of symmetric cipher algorithms. Based on th...The composite field multiplication is an important and complex module in symmetric cipher algorithms, and its realization performance directly restricts the processing speed of symmetric cipher algorithms. Based on the characteristics of composite field multiplication in symmetric cipher algorithms and the realization principle of its reconfigurable architectures, this paper describes the reconfigurable composite field multiplication over GF((2^8)k) (k=1,2,3,4) in RISC (reduced instruction set computer) processor and VLIW (very long instruction word) processor architecture, respectively. Through configuration, the architectures can realize the composite field multiplication over GF(2^8), GF ((2^8)2), GF((28)3) and GF((28)4) flexibly and efficiently. We simulated the function of circuits and synthesized the reconfigurable design based on the 0.18 μm CMOS (complementary metal oxide semiconductor) standard cell library and the comparison with other same kind designs. The result shows that the reconfigurable design proposed in the paper can provide higher efficiency under the premise of flexibility.展开更多
The previously developed single-sweep parabolized Navier-Stokes (SSPNS) space marching code for ideal gas flows has been extended to compute chemically nonequilibrium flows. In the code, the strongly coupled set of ...The previously developed single-sweep parabolized Navier-Stokes (SSPNS) space marching code for ideal gas flows has been extended to compute chemically nonequilibrium flows. In the code, the strongly coupled set of gas dynamics, species conservation, and turbulence equations is integrated with the implicit lower-upper symmetric GaussSeidel (LU-SGS) method in the streamwise direction in a space marching manner. The AUSMPW+ scheme is used to calculate the inviscid fluxes in the crossflow direction, while the conventional central scheme for the viscous fluxes. The k-g two-equation turbulence model is used. The revised SSPNS code is validated by computing the Burrows-Kurkov non-premixed H2/air supersonic combustion flows, premixed H2/air hypersonic combustion flows in a three-dimensional duct with a 15° compression ramp, as well as the hypersonic laminar chemically nonequilibrium air flows around two 10° half-angle cones. The results of these calculations are in good agreement with those of experiments, NASA UPS or Prabhu's PNS codes. It can be concluded that the SSPNS code is highly efficient for steady supersonic/ hypersonic chemically reaction flows when there is no large streamwise separation.展开更多
In this paper, the author presents a class of stationary ternary 4-point approximating symmetrical subdivision algorithm that reproduces cubic polynomials. By these subdivision algorithms at each refinement step, new ...In this paper, the author presents a class of stationary ternary 4-point approximating symmetrical subdivision algorithm that reproduces cubic polynomials. By these subdivision algorithms at each refinement step, new insertion control points on a finer grid are computed by weighted sums of already existing control points. In the limit of the recursive process, data is defined on a dense set of point, The objective is to find an improved subdivision approximating algorithm which has a smaller support and a higher approximating order. The author chooses a ternary scheme because the best way to get a smaller support is to pass from the binary to ternary or complex algorithm and uses polynomial reproducing propriety to get higher approximation order. Using the cardinal Lagrange polynomials the author has proposed a 4-point approximating ternary subdivision algorithm and found that a higher regularity of limit function does not guarantee a higher approximating order. The proposed 4-point ternary approximation subdivision family algorithms with the mask a have the limit function in C2 and have approximation order 4. Also the author has demonstrated that in this class there is no algorithm whose limit function is in C3. It can be seen that this stationary ternary 4-point approximating symmetrical subdivision algorithm has a lower computational cost than the 6-point binary approximation subdivision algorithm for a greater range of points.展开更多
文摘Many organizations have insisted on protecting the cloud server from the outside,although the risks of attacking the cloud server are mostly from the inside.There are many algorithms designed to protect the cloud server from attacks that have been able to protect the cloud server attacks.Still,the attackers have designed even better mechanisms to break these security algorithms.Cloud cryptography is the best data protection algorithm that exchanges data between authentic users.In this article,one symmetric cryptography algorithm will be designed to secure cloud server data,used to send and receive cloud server data securely.A double encryption algorithm will be implemented to send data in a secure format.First,the XOR function will be applied to plain text,and then salt technique will be used.Finally,a reversing mechanism will be implemented on that data to provide more data security.To decrypt data,the cipher text will be reversed,salt will be removed,andXORwill be implemented.At the end of the paper,the proposed algorithm will be compared with other algorithms,and it will conclude how much better the existing algorithm is than other algorithms.
基金The Ministry of Science and Technology project of Taiwan:MOST 108-2511-H-424-001-MY3.
文摘This study applies the diatonic chord in music theory,utilization rate,and the close relationship between the main chord system,the dominant chord system,and the subordinate chord system.From the perspective of music theory,the computer can automatically and quickly analyze the music,and establish a set of algorithms for configuring the chord accompaniment for the main melody,called the symmetrical circle offifths algorithm,SCFA(Symmetrical Circle of Fifths Algorithm).SCFA can immediately confirm the key,perform harmony analysis,configure chord accompaniment for the main melody,and effectively and correctly complete any given melody or interval.It can also quickly analyze and correctly configure the chord accompaniment for any MIDI(Musical Instrument Digital Interface)music,enriching the musicality of the music.It can also allow scorers or computer music creators to quickly deconstruct the harmony configuration of the melody.Through the measurement of bio-feedback sensor HRV(Heart Rate Variability),it can achieve a relaxing music healing effect.
基金Supported by the National Natural Science Foundation of China(61202492,61309022,61309008)the Natural Science Foundation for Young of Shaanxi Province(2013JQ8013)
文摘The composite field multiplication is an important and complex module in symmetric cipher algorithms, and its realization performance directly restricts the processing speed of symmetric cipher algorithms. Based on the characteristics of composite field multiplication in symmetric cipher algorithms and the realization principle of its reconfigurable architectures, this paper describes the reconfigurable composite field multiplication over GF((2^8)k) (k=1,2,3,4) in RISC (reduced instruction set computer) processor and VLIW (very long instruction word) processor architecture, respectively. Through configuration, the architectures can realize the composite field multiplication over GF(2^8), GF ((2^8)2), GF((28)3) and GF((28)4) flexibly and efficiently. We simulated the function of circuits and synthesized the reconfigurable design based on the 0.18 μm CMOS (complementary metal oxide semiconductor) standard cell library and the comparison with other same kind designs. The result shows that the reconfigurable design proposed in the paper can provide higher efficiency under the premise of flexibility.
基金supported by the National Natural Science Foundation of China (51176003)
文摘The previously developed single-sweep parabolized Navier-Stokes (SSPNS) space marching code for ideal gas flows has been extended to compute chemically nonequilibrium flows. In the code, the strongly coupled set of gas dynamics, species conservation, and turbulence equations is integrated with the implicit lower-upper symmetric GaussSeidel (LU-SGS) method in the streamwise direction in a space marching manner. The AUSMPW+ scheme is used to calculate the inviscid fluxes in the crossflow direction, while the conventional central scheme for the viscous fluxes. The k-g two-equation turbulence model is used. The revised SSPNS code is validated by computing the Burrows-Kurkov non-premixed H2/air supersonic combustion flows, premixed H2/air hypersonic combustion flows in a three-dimensional duct with a 15° compression ramp, as well as the hypersonic laminar chemically nonequilibrium air flows around two 10° half-angle cones. The results of these calculations are in good agreement with those of experiments, NASA UPS or Prabhu's PNS codes. It can be concluded that the SSPNS code is highly efficient for steady supersonic/ hypersonic chemically reaction flows when there is no large streamwise separation.
文摘In this paper, the author presents a class of stationary ternary 4-point approximating symmetrical subdivision algorithm that reproduces cubic polynomials. By these subdivision algorithms at each refinement step, new insertion control points on a finer grid are computed by weighted sums of already existing control points. In the limit of the recursive process, data is defined on a dense set of point, The objective is to find an improved subdivision approximating algorithm which has a smaller support and a higher approximating order. The author chooses a ternary scheme because the best way to get a smaller support is to pass from the binary to ternary or complex algorithm and uses polynomial reproducing propriety to get higher approximation order. Using the cardinal Lagrange polynomials the author has proposed a 4-point approximating ternary subdivision algorithm and found that a higher regularity of limit function does not guarantee a higher approximating order. The proposed 4-point ternary approximation subdivision family algorithms with the mask a have the limit function in C2 and have approximation order 4. Also the author has demonstrated that in this class there is no algorithm whose limit function is in C3. It can be seen that this stationary ternary 4-point approximating symmetrical subdivision algorithm has a lower computational cost than the 6-point binary approximation subdivision algorithm for a greater range of points.