Winding short-circuit is one of the more common faults in switched reluctance motors(SRM).This paper takes an in-depth look at winding short-circuit.The characteristic of non-sinusoidal intermittent single phase curre...Winding short-circuit is one of the more common faults in switched reluctance motors(SRM).This paper takes an in-depth look at winding short-circuit.The characteristic of non-sinusoidal intermittent single phase current,fundamental components are extracted to reconstruct four phase symmetrical currents based on spectrum analysis of phase currents.The method of symmetrical component is used to calculate positive and negative sequence components of reconstructed currents,where then the ratio between positive and negative sequence component is seen as a fault feature and the diagnostic criterion is proposed.The simulation and experimental results are presented to confirm the implementation of the proposed method.展开更多
To improve the accuracy of fault location system, several short-circuit tests need to be conducted before being brought into service in autotransformer (AT) feeding systems for high-speed railways in China. However,...To improve the accuracy of fault location system, several short-circuit tests need to be conducted before being brought into service in autotransformer (AT) feeding systems for high-speed railways in China. However, no systematic algorithm yet exists to evaluate the consistency of the current distribution of short-circuit tests. A methodology is proposed in this paper to address this problem. Based on Kirchhoff’s current law and the generalized method of symmetrical components, the current deviations of the AT feeding systems are analysed and then normalized with the short-circuit current as they vary greatly with systems and short-circuit sites. It is also found that the short-circuit current varies with the calculation methods, and its unbiased standard deviation also reflects the consistency of the short-circuit test. The mean and maximum of the current deviations, as well as the unbiased standard deviation of the short-circuit current, show the consistency of the short-circuit test from different aspects,although the last two items are highly relevant. Therefore, a unified evaluation index is defined as the sum of the three items, and then applied in two case studies to test its performance. The results show that, the proposed index canclearly distinguish the consistency of the short-circuit tests and may be used to sort the short-circuit tests for fault location systems. Besides, some short-circuit tests may have very poor consistency indices, and thus are not applicable to the tuning of fault location systems. In the authors’ opinion, the determination of the threshold of the proposed index needs further investigation.展开更多
In a three phase power system, the voltages at the generation side are in sinusoidal and equal in magnitude with 120? phase difference between the phases. However, at the load side voltages may become unbalanced due t...In a three phase power system, the voltages at the generation side are in sinusoidal and equal in magnitude with 120? phase difference between the phases. However, at the load side voltages may become unbalanced due to unequal voltage magnitudes at the fundamental frequency, phase angle deviations or unequal distribution of single phase loads. The voltage unbalance is a major power quality issue, because a small unbalance in the phase voltages can cause a larger unbalance in the phase currents. A completely balanced three-phase three wire system contains only positive sequence components of voltage, current and impedance, whereas unbalanced system contains both positive and negative sequence components of voltages and currents. The negative sequence component of current in the unbalanced system increases the temperature and losses in the equipments. Hence, it is necessary to mitigate this problem by supplying the negative sequence current to the load at the load side and keep the source side balanced. This paper proposes the shunt connected, current injecting Distribution Static Synchronous Compensator (DSTATCOM) with appropriate controller to mitigate the unbalanced load current. The symmetrical components based Hysteresis Current Controller (HCC) is designed for DSTATCOM to diminish the unbalances in a three-phase three-wire system. The performance of the controller is studied by simulating the entire system in the MATLAB/Simulink environment. The DSTATCOM with HCC is found to be better than other controllers because it is suitable for compensating both balanced and unbalanced loads.展开更多
Symmetrical components method is employed in analysis of the characteristic motor faults.Motor protection method is put forward based on detecting positive sequence,negative sequence and zero sequence current.And prob...Symmetrical components method is employed in analysis of the characteristic motor faults.Motor protection method is put forward based on detecting positive sequence,negative sequence and zero sequence current.And problems of lack of motor overload capacity in existing mining motor protection system,impact of dynamic current on stage and definite-time delay operation and inaccuracy of criterion phase failure protection are analyzed.The unbalanced faults protection and inverse-time overload protection,which can make protection time change with the current movement,are proposed.The above problems can be solved,and the reliability and intelligent of coal shearer are improved.展开更多
In this paper,a diagnostic method based on symmetrical and DC components is presented for multiple open-circuit faults(OCFs)in a three-phase permanent magnet synchronous motor drive.The remaining phase currents under ...In this paper,a diagnostic method based on symmetrical and DC components is presented for multiple open-circuit faults(OCFs)in a three-phase permanent magnet synchronous motor drive.The remaining phase currents under faulty situations are theoretically analyzed based on the Fourier series method and the mechanism of torque generation.To evaluate the asymmetry and discriminate fault types,the magnitude ratio of the positive sequence to the negative sequence of phase currents is designed as a fault detection index.Thereafter,the DC components of the phase currents in different reference frames are utilized to locate faults.Specifically,the polarities of the DC contents in the natural reference frame are utilized to locate a single OCF and two OCFs in different legs.Two OCFs in the same leg are diagnosed by evaluating the signs of the phase currents in the dq reference frame with a negative rotating direction.The simulated and experimental results validate the effectiveness of the developed method in fault detection and robustness against operating point and motor parameter variations.展开更多
The paper reports quality analysis and evaluation at 6 - 10/0.4 kV low-voltage distribution grids in Uzbekistan. Power quality frequently does not correspond to the rated value which is largely due to unbalanced phase...The paper reports quality analysis and evaluation at 6 - 10/0.4 kV low-voltage distribution grids in Uzbekistan. Power quality frequently does not correspond to the rated value which is largely due to unbalanced phase loading in grids and which also results in increased power loss. The study of the asymmetrical operating modes of the rural distribution networks of 0.4 kV was conducted in three steps: measurement, calculations and analysis of relevant data;providing practical guidelines and finally, implementing instruments to normalize grid operation. Measuring was conducted using certified instrumentation analyzer “MALIKA” designed by authors. The study and analysis of additional power losses as the function of indicators of asymmetrical features of voltage and current in operating 0.4 kV grids reveals that, quality of electric power at grids under investigation, merely does not meet the requirements of the Interstate Standard.展开更多
In recent years, the increasing application of nonlinear and unbalanced electronic equipment and large single phase loads have made voltage imbalance a serious problem in power distribution systems. A novel approach h...In recent years, the increasing application of nonlinear and unbalanced electronic equipment and large single phase loads have made voltage imbalance a serious problem in power distribution systems. A novel approach has been proposed to eliminate voltage imbalance and disturbances. The main strategy of this scheme is based on series active filter. By improving control circuit toward existing schemes and proposing a new strategy to control the voltage amplitude, simultaneous elimination of voltage imbalance, faults, voltage harmonics and also compensation of voltage drop in transmission lines become possible. Eventually, the voltage on the load side is a perfectly balanced three phase voltage with specific proper amplitude. The proposed scheme has been simulated in a test network and the results show high capability of this scheme for the complete elimination of imbalance without phase shift.展开更多
This paper is to identify and classify the various types of shunt and line faults in transmission line. The faults may be an insulation failure, lightning or accidental faulty operation. In a transmission line protect...This paper is to identify and classify the various types of shunt and line faults in transmission line. The faults may be an insulation failure, lightning or accidental faulty operation. In a transmission line protection important factor is identifying a fault because if any error occurs in finding fault may leads to abnormal operation of the protection system. So either a disturbance or steady state variation is called power quality variation. The proposed test system is modeled based on the neural network and fuzzy algorithm. The online symmetrical components are extracted by this above algorithm. The fuzzy is used to separate the oscillating components and average components. Here input for the fuzzy is trained by using neural network. It is based on current samples and very effective in fault classifier using rule base. This method is very much suitable for online implementation.展开更多
The unbalanced voltages cause negative effects on the doubly fed induction generator (DFIG) sucn as torque pulsation,and increased stator current. Based on the symmetrical component theory, the torque pulsation is t...The unbalanced voltages cause negative effects on the doubly fed induction generator (DFIG) sucn as torque pulsation,and increased stator current. Based on the symmetrical component theory, the torque pulsation is the consequence of the interaction of stator and rotor currents of different sequences. This paper presents a control technique to reduce the effect of unbalanced voltages on the DFIG in wind energy conversion systems. The negative sequence stator voltage is derived from the unbalanced three phase stator voltages. The compensated rotor voltage in terms of the derived negative sequence stator voltage and slip which minimizes the negative stator and rotor currents is proposed. The results from the simulation of control system with steady state model and dynamic model of the DFIG show that additional control loop with compensated voltage can significantly reduce torque and reactive power pulsations.展开更多
A novel control strategy for the load converter supplying the unbalanced AC load in a DC isolated distribution system is presented. The control algorithm results in balanced and sinusoidal load voltages under unbalanc...A novel control strategy for the load converter supplying the unbalanced AC load in a DC isolated distribution system is presented. The control algorithm results in balanced and sinusoidal load voltages under unbalanced AC loading. The unbalanced load is characterized in the d-q-0 rotating coordinate based on symmetrical sequence components. Also, the mathematical model of the load converter in both a-b-c and d-q-0 coordinates is derived by using the average large signal model. Then, two control strategies for the load converter are presented. The first one uses the conventional d-q-0 controller to ensure the voltage and current regulation. The second one is a newly proposed control strategy based on the decomposition of the voltage and current into in-stantaneous positive, negative, and zero sequences. These three sequences are controlled independently in their own reference frames as DC signals. The performance of the load converter using these two control strategies is compared. Simulation results show the validity and capability of the newly proposed control strategy.展开更多
As more electric utilities and transmission system operators move toward the smart grid concept,robust fault analysis has become increasingly complex.This paper proposes a methodology for the detection,classification,...As more electric utilities and transmission system operators move toward the smart grid concept,robust fault analysis has become increasingly complex.This paper proposes a methodology for the detection,classification,and localization of transmission line faults using Synchrophasor measurements.The technique involves the extraction of phasors from the instantaneous three-phase voltages and currents at each bus in the system which are then decomposed into their symmetrical components.These components are sent to the phasor data concentrator(PDC)for real-time fault analysis,which is completed within 2–3 cycles after fault inception.The advantages of this technique are its accuracy and speed,so that fault information may be appropriately communicated to facilitate system restoration.The proposed algorithm is independent of the transmission system topology and displays high accuracy in its results,even with varying parameters such as fault distance,fault inception angle and fault impedance.The proposed algorithm is validated using a three-bus system as well as the Western System Coordinating Council(WSCC)nine bus system.The proposed algorithm is shown to accurately detect the faulted line and classify the fault in all the test cases presented.展开更多
This letter extends the complex-variable perturbed Gauss-Newton method to estimate the state of unbalanced power systems by exploiting the Fortescue transformation.It proposes a novel and efficient graph-based way to ...This letter extends the complex-variable perturbed Gauss-Newton method to estimate the state of unbalanced power systems by exploiting the Fortescue transformation.It proposes a novel and efficient graph-based way to deal with singularities due to zero-sequence network parts bounded with delta transformer windings and isolated from the ground.The estimator can handle both phasor and complex power measurements.Compared with the standard complex-variable unbalanced state estimator,it achieves better numerical stability and a speed-up of around three times using a sequential implementation and five times using parallel execution.展开更多
基金Supported by the Natural Science Foundation of Tianjin of China(No.16JCQNJC04200)the National Natural Science Foundation for nurturing of Tianjin University of Commerce(No.160123).
文摘Winding short-circuit is one of the more common faults in switched reluctance motors(SRM).This paper takes an in-depth look at winding short-circuit.The characteristic of non-sinusoidal intermittent single phase current,fundamental components are extracted to reconstruct four phase symmetrical currents based on spectrum analysis of phase currents.The method of symmetrical component is used to calculate positive and negative sequence components of reconstructed currents,where then the ratio between positive and negative sequence component is seen as a fault feature and the diagnostic criterion is proposed.The simulation and experimental results are presented to confirm the implementation of the proposed method.
文摘To improve the accuracy of fault location system, several short-circuit tests need to be conducted before being brought into service in autotransformer (AT) feeding systems for high-speed railways in China. However, no systematic algorithm yet exists to evaluate the consistency of the current distribution of short-circuit tests. A methodology is proposed in this paper to address this problem. Based on Kirchhoff’s current law and the generalized method of symmetrical components, the current deviations of the AT feeding systems are analysed and then normalized with the short-circuit current as they vary greatly with systems and short-circuit sites. It is also found that the short-circuit current varies with the calculation methods, and its unbiased standard deviation also reflects the consistency of the short-circuit test. The mean and maximum of the current deviations, as well as the unbiased standard deviation of the short-circuit current, show the consistency of the short-circuit test from different aspects,although the last two items are highly relevant. Therefore, a unified evaluation index is defined as the sum of the three items, and then applied in two case studies to test its performance. The results show that, the proposed index canclearly distinguish the consistency of the short-circuit tests and may be used to sort the short-circuit tests for fault location systems. Besides, some short-circuit tests may have very poor consistency indices, and thus are not applicable to the tuning of fault location systems. In the authors’ opinion, the determination of the threshold of the proposed index needs further investigation.
文摘In a three phase power system, the voltages at the generation side are in sinusoidal and equal in magnitude with 120? phase difference between the phases. However, at the load side voltages may become unbalanced due to unequal voltage magnitudes at the fundamental frequency, phase angle deviations or unequal distribution of single phase loads. The voltage unbalance is a major power quality issue, because a small unbalance in the phase voltages can cause a larger unbalance in the phase currents. A completely balanced three-phase three wire system contains only positive sequence components of voltage, current and impedance, whereas unbalanced system contains both positive and negative sequence components of voltages and currents. The negative sequence component of current in the unbalanced system increases the temperature and losses in the equipments. Hence, it is necessary to mitigate this problem by supplying the negative sequence current to the load at the load side and keep the source side balanced. This paper proposes the shunt connected, current injecting Distribution Static Synchronous Compensator (DSTATCOM) with appropriate controller to mitigate the unbalanced load current. The symmetrical components based Hysteresis Current Controller (HCC) is designed for DSTATCOM to diminish the unbalances in a three-phase three-wire system. The performance of the controller is studied by simulating the entire system in the MATLAB/Simulink environment. The DSTATCOM with HCC is found to be better than other controllers because it is suitable for compensating both balanced and unbalanced loads.
文摘Symmetrical components method is employed in analysis of the characteristic motor faults.Motor protection method is put forward based on detecting positive sequence,negative sequence and zero sequence current.And problems of lack of motor overload capacity in existing mining motor protection system,impact of dynamic current on stage and definite-time delay operation and inaccuracy of criterion phase failure protection are analyzed.The unbalanced faults protection and inverse-time overload protection,which can make protection time change with the current movement,are proposed.The above problems can be solved,and the reliability and intelligent of coal shearer are improved.
基金Supported by the Six Talent Peaks Project in Jiangsu Province(GDZB-138)by the Fundamental Research Funds for Central Universities(JUSRP121020).
文摘In this paper,a diagnostic method based on symmetrical and DC components is presented for multiple open-circuit faults(OCFs)in a three-phase permanent magnet synchronous motor drive.The remaining phase currents under faulty situations are theoretically analyzed based on the Fourier series method and the mechanism of torque generation.To evaluate the asymmetry and discriminate fault types,the magnitude ratio of the positive sequence to the negative sequence of phase currents is designed as a fault detection index.Thereafter,the DC components of the phase currents in different reference frames are utilized to locate faults.Specifically,the polarities of the DC contents in the natural reference frame are utilized to locate a single OCF and two OCFs in different legs.Two OCFs in the same leg are diagnosed by evaluating the signs of the phase currents in the dq reference frame with a negative rotating direction.The simulated and experimental results validate the effectiveness of the developed method in fault detection and robustness against operating point and motor parameter variations.
文摘The paper reports quality analysis and evaluation at 6 - 10/0.4 kV low-voltage distribution grids in Uzbekistan. Power quality frequently does not correspond to the rated value which is largely due to unbalanced phase loading in grids and which also results in increased power loss. The study of the asymmetrical operating modes of the rural distribution networks of 0.4 kV was conducted in three steps: measurement, calculations and analysis of relevant data;providing practical guidelines and finally, implementing instruments to normalize grid operation. Measuring was conducted using certified instrumentation analyzer “MALIKA” designed by authors. The study and analysis of additional power losses as the function of indicators of asymmetrical features of voltage and current in operating 0.4 kV grids reveals that, quality of electric power at grids under investigation, merely does not meet the requirements of the Interstate Standard.
文摘In recent years, the increasing application of nonlinear and unbalanced electronic equipment and large single phase loads have made voltage imbalance a serious problem in power distribution systems. A novel approach has been proposed to eliminate voltage imbalance and disturbances. The main strategy of this scheme is based on series active filter. By improving control circuit toward existing schemes and proposing a new strategy to control the voltage amplitude, simultaneous elimination of voltage imbalance, faults, voltage harmonics and also compensation of voltage drop in transmission lines become possible. Eventually, the voltage on the load side is a perfectly balanced three phase voltage with specific proper amplitude. The proposed scheme has been simulated in a test network and the results show high capability of this scheme for the complete elimination of imbalance without phase shift.
文摘This paper is to identify and classify the various types of shunt and line faults in transmission line. The faults may be an insulation failure, lightning or accidental faulty operation. In a transmission line protection important factor is identifying a fault because if any error occurs in finding fault may leads to abnormal operation of the protection system. So either a disturbance or steady state variation is called power quality variation. The proposed test system is modeled based on the neural network and fuzzy algorithm. The online symmetrical components are extracted by this above algorithm. The fuzzy is used to separate the oscillating components and average components. Here input for the fuzzy is trained by using neural network. It is based on current samples and very effective in fault classifier using rule base. This method is very much suitable for online implementation.
文摘The unbalanced voltages cause negative effects on the doubly fed induction generator (DFIG) sucn as torque pulsation,and increased stator current. Based on the symmetrical component theory, the torque pulsation is the consequence of the interaction of stator and rotor currents of different sequences. This paper presents a control technique to reduce the effect of unbalanced voltages on the DFIG in wind energy conversion systems. The negative sequence stator voltage is derived from the unbalanced three phase stator voltages. The compensated rotor voltage in terms of the derived negative sequence stator voltage and slip which minimizes the negative stator and rotor currents is proposed. The results from the simulation of control system with steady state model and dynamic model of the DFIG show that additional control loop with compensated voltage can significantly reduce torque and reactive power pulsations.
文摘A novel control strategy for the load converter supplying the unbalanced AC load in a DC isolated distribution system is presented. The control algorithm results in balanced and sinusoidal load voltages under unbalanced AC loading. The unbalanced load is characterized in the d-q-0 rotating coordinate based on symmetrical sequence components. Also, the mathematical model of the load converter in both a-b-c and d-q-0 coordinates is derived by using the average large signal model. Then, two control strategies for the load converter are presented. The first one uses the conventional d-q-0 controller to ensure the voltage and current regulation. The second one is a newly proposed control strategy based on the decomposition of the voltage and current into in-stantaneous positive, negative, and zero sequences. These three sequences are controlled independently in their own reference frames as DC signals. The performance of the load converter using these two control strategies is compared. Simulation results show the validity and capability of the newly proposed control strategy.
文摘As more electric utilities and transmission system operators move toward the smart grid concept,robust fault analysis has become increasingly complex.This paper proposes a methodology for the detection,classification,and localization of transmission line faults using Synchrophasor measurements.The technique involves the extraction of phasors from the instantaneous three-phase voltages and currents at each bus in the system which are then decomposed into their symmetrical components.These components are sent to the phasor data concentrator(PDC)for real-time fault analysis,which is completed within 2–3 cycles after fault inception.The advantages of this technique are its accuracy and speed,so that fault information may be appropriately communicated to facilitate system restoration.The proposed algorithm is independent of the transmission system topology and displays high accuracy in its results,even with varying parameters such as fault distance,fault inception angle and fault impedance.The proposed algorithm is validated using a three-bus system as well as the Western System Coordinating Council(WSCC)nine bus system.The proposed algorithm is shown to accurately detect the faulted line and classify the fault in all the test cases presented.
基金supported by MONKS,Sarajevo,FBiH,Bosnia and Herzegovina(No.27-02-11-41250-34/21).
文摘This letter extends the complex-variable perturbed Gauss-Newton method to estimate the state of unbalanced power systems by exploiting the Fortescue transformation.It proposes a novel and efficient graph-based way to deal with singularities due to zero-sequence network parts bounded with delta transformer windings and isolated from the ground.The estimator can handle both phasor and complex power measurements.Compared with the standard complex-variable unbalanced state estimator,it achieves better numerical stability and a speed-up of around three times using a sequential implementation and five times using parallel execution.