Wan and Zhang(2021) obtained a nontrivial lower bound for the number of zeros of complete symmetric polynomials over finite fields,and proposed a problem whether their bound can be improved.In this paper,the author im...Wan and Zhang(2021) obtained a nontrivial lower bound for the number of zeros of complete symmetric polynomials over finite fields,and proposed a problem whether their bound can be improved.In this paper,the author improves Wan-Zhang's bound from three aspects.The proposed results are based on the estimates related to the number of certain permutations and the value sets of non-permutation polynomials associated to the complete symmetric polynomial.And the author believes that there are still possibilities to improve the bounds and hence Wan-Zhang's bound.展开更多
Suppose that q is not a root of unity, it is proved in this paper that the center of the quantum group Uq(sl4) is isomorphic to a quotient algebra of polynomial algebra with four variables and one relation.
We study special functions related to Lotka-Volterra equations and negative Volterra equation intro-duced from zero curvature representations . At first we show the relationships between Lotka-Volterra equations intro...We study special functions related to Lotka-Volterra equations and negative Volterra equation intro-duced from zero curvature representations . At first we show the relationships between Lotka-Volterra equations introduced from zero curvature representations and symmetric orthogonal polynomials. Sec-ondarily, we describe the relationships between negative Volterra equations with a special solutions and cylinder functions.展开更多
An algorithm is presented for decomposing a symmetric tensor into a sum of rank-1 symmetric tensors. For a given tensor, by using apolarity, catalecticant matrices and the condition that the mapping matrices are commu...An algorithm is presented for decomposing a symmetric tensor into a sum of rank-1 symmetric tensors. For a given tensor, by using apolarity, catalecticant matrices and the condition that the mapping matrices are commutative, the rank of the tensor can be obtained by iteration. Then we can find the generating polynomials under a selected basis set. The decomposition can be constructed by the solutions of generating polynomials under the condition that the solutions are all distinct which can be guaranteed by the commutative property of the matrices. Numerical examples demonstrate the efficiency and accuracy of the proposed method.展开更多
In this paper, we present a large-update primal-dual interior-point method for symmetric cone optimization(SCO) based on a new kernel function, which determines both search directions and the proximity measure betwe...In this paper, we present a large-update primal-dual interior-point method for symmetric cone optimization(SCO) based on a new kernel function, which determines both search directions and the proximity measure between the iterate and the center path. The kernel function is neither a self-regular function nor the usual logarithmic kernel function. Besides, by using Euclidean Jordan algebraic techniques, we achieve the favorable iteration complexity O( √r(1/2)(log r)^2 log(r/ ε)), which is as good as the convex quadratic semi-definite optimization analogue.展开更多
In this paper,we derive a generalized nonisospectral semi-infinite Lotka-Volterra equation,which possesses a determinant solution.We also give its a Lax pair expressed in terms of symmetric orthogonal polynomials.In a...In this paper,we derive a generalized nonisospectral semi-infinite Lotka-Volterra equation,which possesses a determinant solution.We also give its a Lax pair expressed in terms of symmetric orthogonal polynomials.In addition,if the simplified case of the moment evolution relation is considered,that is,without the convolution term,we also give a generalized nonisospectral finite Lotka-Volterra equation with an explicit determinant solution.Finally,an application of the generalized nonisospectral continuous-time Lotka-Volterra equation in the food chain is investigated by numerical simulation.Our approach is mainly based on Hirota’s bilinear method and determinant techniques.展开更多
By means of dimension-decreasing method and cell-decomposition,a practical algorithm is proposed to decide the positivity of a certain class of symmetric polynomials,the numbers of whose elements are variable.This is ...By means of dimension-decreasing method and cell-decomposition,a practical algorithm is proposed to decide the positivity of a certain class of symmetric polynomials,the numbers of whose elements are variable.This is a class of mechanically decidable problems beyond Tarski model.To implement the algorithm,a program nprove written in maple is developed which can decide the positivity of these polynomials rapidly.展开更多
The authors propose a new approach to construct subclasses of biholomorphic mappings with special geometric properties in several complex variables. The RoperSuffridge operator on the unit ball B^n in C^n is modified....The authors propose a new approach to construct subclasses of biholomorphic mappings with special geometric properties in several complex variables. The RoperSuffridge operator on the unit ball B^n in C^n is modified. By the analytical characteristics and the growth theorems of subclasses of spirallike mappings, it is proved that the modified Roper-Suffridge operator [Φ_(G,γ)(f)](z) preserves the properties of S_Ω~*(A, B), as well as strong and almost spirallikeness of type β and order α on B^n. Thus, the mappings in S_Ω~*(A, B), as well as strong and almost spirallike mappings, can be constructed through the corresponding functions in one complex variable. The conclusions follow some special cases and contain the elementary results.展开更多
基金supported by the Natural Science Foundation of Fujian Province,China under Grant No.2022J02046Fujian Key Laboratory of Granular Computing and Applications (Minnan Normal University)Institute of Meteorological Big Data-Digital Fujian and Fujian Key Laboratory of Data Science and Statistics。
文摘Wan and Zhang(2021) obtained a nontrivial lower bound for the number of zeros of complete symmetric polynomials over finite fields,and proposed a problem whether their bound can be improved.In this paper,the author improves Wan-Zhang's bound from three aspects.The proposed results are based on the estimates related to the number of certain permutations and the value sets of non-permutation polynomials associated to the complete symmetric polynomial.And the author believes that there are still possibilities to improve the bounds and hence Wan-Zhang's bound.
基金supported by National Natural Science Foundation of China (Grant No.10771182)Doctorate Foundation Ministry of Education of China (Grant No. 200811170001)
文摘Suppose that q is not a root of unity, it is proved in this paper that the center of the quantum group Uq(sl4) is isomorphic to a quotient algebra of polynomial algebra with four variables and one relation.
文摘We study special functions related to Lotka-Volterra equations and negative Volterra equation intro-duced from zero curvature representations . At first we show the relationships between Lotka-Volterra equations introduced from zero curvature representations and symmetric orthogonal polynomials. Sec-ondarily, we describe the relationships between negative Volterra equations with a special solutions and cylinder functions.
基金This work was supported by the National Natural Science Foundation of China (Grants Nos. 11471159, 11571169, 61661136001) and the Natural Science Foundation of Jiangsu Province (No. BK20141409).
文摘An algorithm is presented for decomposing a symmetric tensor into a sum of rank-1 symmetric tensors. For a given tensor, by using apolarity, catalecticant matrices and the condition that the mapping matrices are commutative, the rank of the tensor can be obtained by iteration. Then we can find the generating polynomials under a selected basis set. The decomposition can be constructed by the solutions of generating polynomials under the condition that the solutions are all distinct which can be guaranteed by the commutative property of the matrices. Numerical examples demonstrate the efficiency and accuracy of the proposed method.
基金Supported by the Natural Science Foundation of Hubei Province(2008CDZD47)
文摘In this paper, we present a large-update primal-dual interior-point method for symmetric cone optimization(SCO) based on a new kernel function, which determines both search directions and the proximity measure between the iterate and the center path. The kernel function is neither a self-regular function nor the usual logarithmic kernel function. Besides, by using Euclidean Jordan algebraic techniques, we achieve the favorable iteration complexity O( √r(1/2)(log r)^2 log(r/ ε)), which is as good as the convex quadratic semi-definite optimization analogue.
基金supported by R&D Program of Beijing Municipal Education Commission (Grant No. KM202310005012)National Natural Science Foundation of China (Grant Nos. 11901022 and 12171461)+1 种基金Beijing Municipal Natural Science Foundation (Grant Nos. 1204027 and 1212007)supported in part by the National Natural Science Foundation of China (Grant Nos. 11931017 and 12071447)
文摘In this paper,we derive a generalized nonisospectral semi-infinite Lotka-Volterra equation,which possesses a determinant solution.We also give its a Lax pair expressed in terms of symmetric orthogonal polynomials.In addition,if the simplified case of the moment evolution relation is considered,that is,without the convolution term,we also give a generalized nonisospectral finite Lotka-Volterra equation with an explicit determinant solution.Finally,an application of the generalized nonisospectral continuous-time Lotka-Volterra equation in the food chain is investigated by numerical simulation.Our approach is mainly based on Hirota’s bilinear method and determinant techniques.
基金This work was partially supported by China 973 Project NKBRPC (Grant No.2004CB318003)the Knowledge Innovation Program of the Chinese Academy of Sciences (Grant No.KJCX2-YW-S02)
文摘By means of dimension-decreasing method and cell-decomposition,a practical algorithm is proposed to decide the positivity of a certain class of symmetric polynomials,the numbers of whose elements are variable.This is a class of mechanically decidable problems beyond Tarski model.To implement the algorithm,a program nprove written in maple is developed which can decide the positivity of these polynomials rapidly.
基金supported by the National Natural Science Foundation of China(Nos.11271359,11471098)the Joint Funds of the National Natural Science Foundation of China(No.U1204618)the Science and Technology Research Projects of Henan Provincial Education Department(Nos.14B110015,14B110016)
文摘The authors propose a new approach to construct subclasses of biholomorphic mappings with special geometric properties in several complex variables. The RoperSuffridge operator on the unit ball B^n in C^n is modified. By the analytical characteristics and the growth theorems of subclasses of spirallike mappings, it is proved that the modified Roper-Suffridge operator [Φ_(G,γ)(f)](z) preserves the properties of S_Ω~*(A, B), as well as strong and almost spirallikeness of type β and order α on B^n. Thus, the mappings in S_Ω~*(A, B), as well as strong and almost spirallike mappings, can be constructed through the corresponding functions in one complex variable. The conclusions follow some special cases and contain the elementary results.