The symmetric positive definite solutions of matrix equations (AX,XB)=(C,D) and AXB=C are considered in this paper. Necessary and sufficient conditions for the matrix equations to have symmetric positive de...The symmetric positive definite solutions of matrix equations (AX,XB)=(C,D) and AXB=C are considered in this paper. Necessary and sufficient conditions for the matrix equations to have symmetric positive definite solutions are derived using the singular value and the generalized singular value decompositions. The expressions for the general symmetric positive definite solutions are given when certain conditions hold.展开更多
In this paper, we are concerned with the symmetric positive solutions of a 2n-order boundary value problems on time scales. By using induction principle,the symmetric form of the Green's function is established. In o...In this paper, we are concerned with the symmetric positive solutions of a 2n-order boundary value problems on time scales. By using induction principle,the symmetric form of the Green's function is established. In order to construct a necessary and sufficient condition for the existence result, the method of iterative technique will be used. As an application, an example is given to illustrate our main result.展开更多
In this paper, we consider the following second order three-point boundary value problem u″(t)+a(t)f(u(t))=0,0〈t〈1,u(0)-u(1)=0,u'(0)-u'(1)=u(1/2),where a : (0, 1) → [0, ∞) is symmetric on...In this paper, we consider the following second order three-point boundary value problem u″(t)+a(t)f(u(t))=0,0〈t〈1,u(0)-u(1)=0,u'(0)-u'(1)=u(1/2),where a : (0, 1) → [0, ∞) is symmetric on (0, 1) and may be singular at t = 0 and t = 1, f : [0, ∞) → [O, ∞) is continuous. By using Krasnoselskii's fixed point theorem ia a cone, we get some existence results of positive solutions for the problem. The associated Green's function for the three-point boundary value problem is also given.展开更多
Using the Leggett-Williams fixed point theorem, we will obtain at least three symmetric positive solutions to the second-order nonlocal boundary value problem of the form u″(t)+g(t)f(t,u(t))=0,0〈t〈1,u(0...Using the Leggett-Williams fixed point theorem, we will obtain at least three symmetric positive solutions to the second-order nonlocal boundary value problem of the form u″(t)+g(t)f(t,u(t))=0,0〈t〈1,u(0)=u(1)=∫01m(s)u(s)ds. where m ∈ L1[0 1], g : (0, 1)→ [0, ∞) is continuous, symmetric on (0, 1) and maybe singular at t = 0 and t = 1, f: [0, 1] × [0, ∞) → [0, ∞) is continuous and f(-, x) is symmetric on [0, 1] for all x∈ [0, ∞).展开更多
In this paper,we consider the existence of symmetric solutions to a nonlinear second order multi-point boundary value problem,and establish corresponding iterative schemes based on the monotone iterative method.
We derive new and tight bounds about the eigenvalues and certain sums of the eigenvalues for the unique symmetric positive definite solutions of the discrete algebraic Riccati equations. These bounds considerably impr...We derive new and tight bounds about the eigenvalues and certain sums of the eigenvalues for the unique symmetric positive definite solutions of the discrete algebraic Riccati equations. These bounds considerably improve the existing ones and treat the cases that have been not discussed in the literature. Besides, they also result in completions for the available bounds about the extremal eigenvalues and the traces of the solutions of the discrete algebraic Riccati equations. We study the fixed-point iteration methods for com- puting the symmetric positive definite solutions of the discrete algebraic Riccati equations and establish their general convergence theory. By making use of the Schulz iteration to partially avoid computing the matrix inversions, we present effective variants of the fixed-point iterations, prove their monotone convergence and estimate their asymptotic convergence rates. Numerical results show that the modified fixed-point iteration methods are feasible and effective solvers for computing the symmetric positive definite solutions of the discrete algebraic Riccati equations.展开更多
This paper is concerned with the existence of positive solutions of two-point Dirichlet singular and nonsingular boundary problems for second-order quasi-linear differential equations with changing sign nonlinearities.
文摘The symmetric positive definite solutions of matrix equations (AX,XB)=(C,D) and AXB=C are considered in this paper. Necessary and sufficient conditions for the matrix equations to have symmetric positive definite solutions are derived using the singular value and the generalized singular value decompositions. The expressions for the general symmetric positive definite solutions are given when certain conditions hold.
基金Supported by NNSF of China(11201213,11371183)NSF of Shandong Province(ZR2010AM022,ZR2013AM004)+2 种基金the Project of Shandong Provincial Higher Educational Science and Technology(J15LI07)the Project of Ludong University High-Quality Curriculum(20130345)the Teaching Reform Project of Ludong University in 2014(20140405)
文摘In this paper, we are concerned with the symmetric positive solutions of a 2n-order boundary value problems on time scales. By using induction principle,the symmetric form of the Green's function is established. In order to construct a necessary and sufficient condition for the existence result, the method of iterative technique will be used. As an application, an example is given to illustrate our main result.
基金Supported by the National Natural Science Foundation of China(No.10471075)National Natural Science Foundation of Shandong Province of China(No.Y2003A01)Foundation of Education Department of Zhejiang Province of China(No.20040495,No.20051897)
文摘In this paper, we consider the following second order three-point boundary value problem u″(t)+a(t)f(u(t))=0,0〈t〈1,u(0)-u(1)=0,u'(0)-u'(1)=u(1/2),where a : (0, 1) → [0, ∞) is symmetric on (0, 1) and may be singular at t = 0 and t = 1, f : [0, ∞) → [O, ∞) is continuous. By using Krasnoselskii's fixed point theorem ia a cone, we get some existence results of positive solutions for the problem. The associated Green's function for the three-point boundary value problem is also given.
基金Supported by the National Natural Science Foundation of Zhejiang Province of China(No.Y605144)the Science Research Foundation of Educational Department of Zhejiang Province of China(No.200804671)
文摘Using the Leggett-Williams fixed point theorem, we will obtain at least three symmetric positive solutions to the second-order nonlocal boundary value problem of the form u″(t)+g(t)f(t,u(t))=0,0〈t〈1,u(0)=u(1)=∫01m(s)u(s)ds. where m ∈ L1[0 1], g : (0, 1)→ [0, ∞) is continuous, symmetric on (0, 1) and maybe singular at t = 0 and t = 1, f: [0, 1] × [0, ∞) → [0, ∞) is continuous and f(-, x) is symmetric on [0, 1] for all x∈ [0, ∞).
基金Supported by Youth PhD Development Fund of Central University of Finance and Economics121 Talent Cultivation Project (No.QBJZH201004)Discipline Construction Fund of Central University of Finance and Economics
文摘In this paper,we consider the existence of symmetric solutions to a nonlinear second order multi-point boundary value problem,and establish corresponding iterative schemes based on the monotone iterative method.
基金Acknowledgments. This work was started when the first author was visiting State Key Laboratory of Scientific/Engineering Computing, Chinese Academy of Sciences, during March-May in 2008. The support and hospitality from LSEC are very much appreciated. Supported by The National Basic Research Program (No. 2005CB321702), The China Outstanding Young Scientist Foundation (No. 10525102), and The National Natural Science Foundation for Innovative Research Groups (No. 11021101), P.R. China.
文摘We derive new and tight bounds about the eigenvalues and certain sums of the eigenvalues for the unique symmetric positive definite solutions of the discrete algebraic Riccati equations. These bounds considerably improve the existing ones and treat the cases that have been not discussed in the literature. Besides, they also result in completions for the available bounds about the extremal eigenvalues and the traces of the solutions of the discrete algebraic Riccati equations. We study the fixed-point iteration methods for com- puting the symmetric positive definite solutions of the discrete algebraic Riccati equations and establish their general convergence theory. By making use of the Schulz iteration to partially avoid computing the matrix inversions, we present effective variants of the fixed-point iterations, prove their monotone convergence and estimate their asymptotic convergence rates. Numerical results show that the modified fixed-point iteration methods are feasible and effective solvers for computing the symmetric positive definite solutions of the discrete algebraic Riccati equations.
基金This work is supported by Distinguished Expert Science Foundation of Naval Aeronautical Engineering Institute.
文摘This paper is concerned with the existence of positive solutions of two-point Dirichlet singular and nonsingular boundary problems for second-order quasi-linear differential equations with changing sign nonlinearities.