We establish the existence and multiplicity of weak solutions for equations which involve a uniformly convex elliptic operator in divergence form(in particular, a p-Laplacian operator), while the nonlinearity has a(p-...We establish the existence and multiplicity of weak solutions for equations which involve a uniformly convex elliptic operator in divergence form(in particular, a p-Laplacian operator), while the nonlinearity has a(p- 1)-superlinear growth at infinity. Our result completes and extends the relevant results of recent papers. The argument in the proof of our main result relies on the Z2-symmetric version of mountain pass lemma.展开更多
基金Supported by the NNSF of China(11101145)Supported by the NSF of Henan Province(102102210216)
文摘We establish the existence and multiplicity of weak solutions for equations which involve a uniformly convex elliptic operator in divergence form(in particular, a p-Laplacian operator), while the nonlinearity has a(p- 1)-superlinear growth at infinity. Our result completes and extends the relevant results of recent papers. The argument in the proof of our main result relies on the Z2-symmetric version of mountain pass lemma.