The use of signals of different frequencies determines the geometrical deviation with respect to the optical axes of a given beam. This angle can be determined by Sympletic Map (SM), a powerful and simple mathematical...The use of signals of different frequencies determines the geometrical deviation with respect to the optical axes of a given beam. This angle can be determined by Sympletic Map (SM), a powerful and simple mathematical tool for the characterization and construction of images in Geometrical Optics. The Sympletic Map constitutes a Lie Group, with an algebra associated: the Lie Algebra. In general, the SM can be expressed as an infinite series, where each term corresponds to different contributions produced by the optical devices that constitute the optical system (lenses, apertures, bandwidth cutoff, etc.). The level of correction to be performed on the image to recover the original object is clear and controllable by SM. This formalism can be extended easily to physical optics to describe diffraction and interference phenomena.展开更多
A discrete spectral problem is discussed, and a hierarchy of integrable nonlinear lattice equations related to this spectral problem is devised. The new integrable symplectic map and finite-dimensional integrable syst...A discrete spectral problem is discussed, and a hierarchy of integrable nonlinear lattice equations related to this spectral problem is devised. The new integrable symplectic map and finite-dimensional integrable systems are given by nonlinearization method. The binary Bargmann constraint gives rise to a B?cklund transformation for the resulting integrable lattice equations.展开更多
Starting from a discrete spectral problem, a hierarchy of integrable lattice soliton equations is derived. It is shown that the hierarchy is completely integrable in the Liouville sense and possesses discrete bi-Hamil...Starting from a discrete spectral problem, a hierarchy of integrable lattice soliton equations is derived. It is shown that the hierarchy is completely integrable in the Liouville sense and possesses discrete bi-Hamiltonian structure. A new integrable symplectic map and finite-dimensional integrable systems are given by nonlinearization method. The binary Bargmann constraint gives rise to a Biicklund transformation for the resulting integrable lattice equations. At last, conservation laws of the hierarchy are presented.展开更多
Measure synchronization in coupled Hamiltonian systems is a novel synchronization phenomenon. The measure synchronization on symplectic map is observed numerically, for identical coupled systems with different paramet...Measure synchronization in coupled Hamiltonian systems is a novel synchronization phenomenon. The measure synchronization on symplectic map is observed numerically, for identical coupled systems with different parameters. We have found the properties of the characteristic frequency and the amplitude of phase locking in regular motion when the measure synchronization of coupled systems is obtained. The relations between the change of the largest Lyapunov exponent and the course of phase desynchronization are also discussed in coupled systems, some useful results are obtained. A new approach is proposed for describing the measure synchronization of coupled systems numerically,which is advantage in judging the measure synchronization, especially for the coupled systems in nonregular region.展开更多
The method of nonlinearization of spectral problem is developed and applied to the discrete nonlinear Schr6dinger (DNLS) equation which is a reduction of the Ablowitz-Ladik equation with a reality condition. A new i...The method of nonlinearization of spectral problem is developed and applied to the discrete nonlinear Schr6dinger (DNLS) equation which is a reduction of the Ablowitz-Ladik equation with a reality condition. A new integable symplectic map is obtained and its integrable properties such as the Lax representation, r-matrix, and invariants are established.展开更多
By resorting to the nonlinearization approach, a Neumann constraint associated with a discrete 3 × 3 matrix eigenvalue problem is considered. A new symplectic map of the Neumann type is obtained through nonlinear...By resorting to the nonlinearization approach, a Neumann constraint associated with a discrete 3 × 3 matrix eigenvalue problem is considered. A new symplectic map of the Neumann type is obtained through nonlinearization of the discrete eigenvalue problem and its adjoint one. The generating function of integrals of motion is presented, by which the symplectic reap'is further proved to be completely integrable in the Liouville sense.展开更多
A symplectic mapping is studied carefully. The exponential diffusion last, in developed chaotic region and algebraic law in mixed region were observed. An area was found where the diffusion follows a logarithmic law. ...A symplectic mapping is studied carefully. The exponential diffusion last, in developed chaotic region and algebraic law in mixed region were observed. An area was found where the diffusion follows a logarithmic law. It is shown in the vicinity of an island, the logarithm of the escape time decreases linearily as the initial position moves away from the island. But when approaching close to the island, the escape time goes up very quickly, consistent with the superexponential stability of the invariant curve. When applied to the motion of asteroid, this mapping's fixed points and their stabilities give an explanation of the distribution of asteroids. The diffusion velocities in 4:3, 3:2 and 2:1 jovian resonances are also investigated.展开更多
In this paper, we study the persistence of invariant tori of integrable Hamiltonian systems satisfying Rssmann's non-degeneracy condition when symplectic integrators are applied to them. Meanwhile, we give an esti...In this paper, we study the persistence of invariant tori of integrable Hamiltonian systems satisfying Rssmann's non-degeneracy condition when symplectic integrators are applied to them. Meanwhile, we give an estimate of the measure of the set occupied by the invariant tori in the phase space. On an invariant torus,numerical solutions are quasi-periodic with a diophantine frequency vector of time step size dependence. These results generalize Shang's previous ones(1999, 2000), where the non-degeneracy condition is assumed in the sense of Kolmogorov.展开更多
New family of integrable symplectic maps are reduced from the Toda hierarchy via constraint for a higher flow of the hierarchy in terms of square eigenfunctions.Their integrability and Lax representation are deduced s...New family of integrable symplectic maps are reduced from the Toda hierarchy via constraint for a higher flow of the hierarchy in terms of square eigenfunctions.Their integrability and Lax representation are deduced systematically from the discrete zero curvature representation of the Toda hierarchy. Also a discrete zero curvature representation for the Toda hierarchy with sources is presented.展开更多
It is shown that each lattice equation in the Toda hierarchy can be factored by an integrable symplectic map and a finite dimensional integrable Hamiltonian system via higher order constraint relating the potential ...It is shown that each lattice equation in the Toda hierarchy can be factored by an integrable symplectic map and a finite dimensional integrable Hamiltonian system via higher order constraint relating the potential and square eigenfunctions. The classical Poisson structure and r matrix for the constrained flows are presented.展开更多
By choosing a discrete matrix spectral problem, a hierarchy of integrable differential-difference equations is derived from the discrete zero curvature equation, and the Hamiltonian structures are built. Through a hig...By choosing a discrete matrix spectral problem, a hierarchy of integrable differential-difference equations is derived from the discrete zero curvature equation, and the Hamiltonian structures are built. Through a higher-order Bargmann symmetry constraint, the spatial part and the temporal part of the Lax pairs and adjoint Lax pairs, which we obtained are respectively nonlinearized into a new integrable symplectic map and a finite-dimensional integrable Hamiltonian system in Liouville sense.展开更多
A hierarchy of lattice soliton equations is derived from a discrete matrix spectral problem. It is shown that the resulting lattice soliton equations are all discrete Liouville integrable systems. A new integrable sym...A hierarchy of lattice soliton equations is derived from a discrete matrix spectral problem. It is shown that the resulting lattice soliton equations are all discrete Liouville integrable systems. A new integrable symplectic map and a family of finite-dimensional integrable systems are given by the binary nonli-nearization method. The binary Bargmann constraint gives rise to a Backlund transformation for the resulting lattice soliton equations.展开更多
A hierarchy of integrable lattice soliton equations and its Hamiitonian struc ture associated a 3×3 matrix spectral problem are got. An integrable symplectic map is obtained by nonlinearization of Lax pairs and a...A hierarchy of integrable lattice soliton equations and its Hamiitonian struc ture associated a 3×3 matrix spectral problem are got. An integrable symplectic map is obtained by nonlinearization of Lax pairs and ad joint Lax pairs of the hierarchy. Moreover, the solutions to the prototype system of lattice equations in the hierarchy are reduced to the solutions of a system of ordinary differential equations and a simple iterative process of the symplectic map.展开更多
We analyze three one parameter families of approximations and show that they are symplectic in Lagrangian sence and can be related to symplectic schemes in Hamiltonian sense by different symplectic mappings. We also g...We analyze three one parameter families of approximations and show that they are symplectic in Lagrangian sence and can be related to symplectic schemes in Hamiltonian sense by different symplectic mappings. We also give a direct generalization of Veselov variational principle for construction of scheme of higher order differential equations. At last, we present numerical experiments.展开更多
A family of integrable differential-difference equations is derived from a new matrix spectral problem. The Hamiltonian forms of obtained differential-difference equations are constructed. The Liouville integrability ...A family of integrable differential-difference equations is derived from a new matrix spectral problem. The Hamiltonian forms of obtained differential-difference equations are constructed. The Liouville integrability for the obtained integrable family is proved. Then, Bargmann symmetry constraint of the obtained integrable family is presented by binary nonliearization method of Lax pairs and adjoint Lax pairs. Under this Bargmann symmetry constraints, an integrable symplectic map and a sequences of completely integrable finite-dimensional Hamiltonian systems in Liouville sense are worked out, and every integrable differential-difference equations in the obtained family is factored by the integrable symplectie map and a completely integrable tinite-dimensionai Hamiltonian system.展开更多
文摘The use of signals of different frequencies determines the geometrical deviation with respect to the optical axes of a given beam. This angle can be determined by Sympletic Map (SM), a powerful and simple mathematical tool for the characterization and construction of images in Geometrical Optics. The Sympletic Map constitutes a Lie Group, with an algebra associated: the Lie Algebra. In general, the SM can be expressed as an infinite series, where each term corresponds to different contributions produced by the optical devices that constitute the optical system (lenses, apertures, bandwidth cutoff, etc.). The level of correction to be performed on the image to recover the original object is clear and controllable by SM. This formalism can be extended easily to physical optics to describe diffraction and interference phenomena.
文摘A discrete spectral problem is discussed, and a hierarchy of integrable nonlinear lattice equations related to this spectral problem is devised. The new integrable symplectic map and finite-dimensional integrable systems are given by nonlinearization method. The binary Bargmann constraint gives rise to a B?cklund transformation for the resulting integrable lattice equations.
基金The project supported by National Natural Science Foundation of China under Grant No. 10371070
文摘Starting from a discrete spectral problem, a hierarchy of integrable lattice soliton equations is derived. It is shown that the hierarchy is completely integrable in the Liouville sense and possesses discrete bi-Hamiltonian structure. A new integrable symplectic map and finite-dimensional integrable systems are given by nonlinearization method. The binary Bargmann constraint gives rise to a Biicklund transformation for the resulting integrable lattice equations. At last, conservation laws of the hierarchy are presented.
基金国家重点基础研究发展计划(973计划),国家自然科学基金,the Innovation Funds for Laser Technology
文摘Measure synchronization in coupled Hamiltonian systems is a novel synchronization phenomenon. The measure synchronization on symplectic map is observed numerically, for identical coupled systems with different parameters. We have found the properties of the characteristic frequency and the amplitude of phase locking in regular motion when the measure synchronization of coupled systems is obtained. The relations between the change of the largest Lyapunov exponent and the course of phase desynchronization are also discussed in coupled systems, some useful results are obtained. A new approach is proposed for describing the measure synchronization of coupled systems numerically,which is advantage in judging the measure synchronization, especially for the coupled systems in nonregular region.
基金Supported by National Natural Science Foundation of China under Grant No. 10871165
文摘The method of nonlinearization of spectral problem is developed and applied to the discrete nonlinear Schr6dinger (DNLS) equation which is a reduction of the Ablowitz-Ladik equation with a reality condition. A new integable symplectic map is obtained and its integrable properties such as the Lax representation, r-matrix, and invariants are established.
基金The project supported by National Natural Science Foundation of China under Grant No. 10471132 and the Special Foundation for the State Key Basic Research Program "Nonlinear Science"
文摘By resorting to the nonlinearization approach, a Neumann constraint associated with a discrete 3 × 3 matrix eigenvalue problem is considered. A new symplectic map of the Neumann type is obtained through nonlinearization of the discrete eigenvalue problem and its adjoint one. The generating function of integrals of motion is presented, by which the symplectic reap'is further proved to be completely integrable in the Liouville sense.
文摘A symplectic mapping is studied carefully. The exponential diffusion last, in developed chaotic region and algebraic law in mixed region were observed. An area was found where the diffusion follows a logarithmic law. It is shown in the vicinity of an island, the logarithm of the escape time decreases linearily as the initial position moves away from the island. But when approaching close to the island, the escape time goes up very quickly, consistent with the superexponential stability of the invariant curve. When applied to the motion of asteroid, this mapping's fixed points and their stabilities give an explanation of the distribution of asteroids. The diffusion velocities in 4:3, 3:2 and 2:1 jovian resonances are also investigated.
基金supported by National Natural Science Foundation of China(Grant No.11671392)
文摘In this paper, we study the persistence of invariant tori of integrable Hamiltonian systems satisfying Rssmann's non-degeneracy condition when symplectic integrators are applied to them. Meanwhile, we give an estimate of the measure of the set occupied by the invariant tori in the phase space. On an invariant torus,numerical solutions are quasi-periodic with a diophantine frequency vector of time step size dependence. These results generalize Shang's previous ones(1999, 2000), where the non-degeneracy condition is assumed in the sense of Kolmogorov.
文摘New family of integrable symplectic maps are reduced from the Toda hierarchy via constraint for a higher flow of the hierarchy in terms of square eigenfunctions.Their integrability and Lax representation are deduced systematically from the discrete zero curvature representation of the Toda hierarchy. Also a discrete zero curvature representation for the Toda hierarchy with sources is presented.
文摘It is shown that each lattice equation in the Toda hierarchy can be factored by an integrable symplectic map and a finite dimensional integrable Hamiltonian system via higher order constraint relating the potential and square eigenfunctions. The classical Poisson structure and r matrix for the constrained flows are presented.
基金Supported by the National Basic Research Program of China (973) Funded Project under Grant No. 2011CB201206
文摘By choosing a discrete matrix spectral problem, a hierarchy of integrable differential-difference equations is derived from the discrete zero curvature equation, and the Hamiltonian structures are built. Through a higher-order Bargmann symmetry constraint, the spatial part and the temporal part of the Lax pairs and adjoint Lax pairs, which we obtained are respectively nonlinearized into a new integrable symplectic map and a finite-dimensional integrable Hamiltonian system in Liouville sense.
文摘A hierarchy of lattice soliton equations is derived from a discrete matrix spectral problem. It is shown that the resulting lattice soliton equations are all discrete Liouville integrable systems. A new integrable symplectic map and a family of finite-dimensional integrable systems are given by the binary nonli-nearization method. The binary Bargmann constraint gives rise to a Backlund transformation for the resulting lattice soliton equations.
文摘A hierarchy of integrable lattice soliton equations and its Hamiitonian struc ture associated a 3×3 matrix spectral problem are got. An integrable symplectic map is obtained by nonlinearization of Lax pairs and ad joint Lax pairs of the hierarchy. Moreover, the solutions to the prototype system of lattice equations in the hierarchy are reduced to the solutions of a system of ordinary differential equations and a simple iterative process of the symplectic map.
基金Supported by the special founds for Major State Basic Reserch Project, G1999, 023800.
文摘We analyze three one parameter families of approximations and show that they are symplectic in Lagrangian sence and can be related to symplectic schemes in Hamiltonian sense by different symplectic mappings. We also give a direct generalization of Veselov variational principle for construction of scheme of higher order differential equations. At last, we present numerical experiments.
基金Supported by the Science and Technology Plan Projects of the Educational Department of Shandong Province of China under GrantNo. J08LI08
文摘A family of integrable differential-difference equations is derived from a new matrix spectral problem. The Hamiltonian forms of obtained differential-difference equations are constructed. The Liouville integrability for the obtained integrable family is proved. Then, Bargmann symmetry constraint of the obtained integrable family is presented by binary nonliearization method of Lax pairs and adjoint Lax pairs. Under this Bargmann symmetry constraints, an integrable symplectic map and a sequences of completely integrable finite-dimensional Hamiltonian systems in Liouville sense are worked out, and every integrable differential-difference equations in the obtained family is factored by the integrable symplectie map and a completely integrable tinite-dimensionai Hamiltonian system.