期刊文献+
共找到2篇文章
< 1 >
每页显示 20 50 100
In vivo field recordings effectively monitor the mouse cortex and hippocampus under isoflurane anesthesia 被引量:1
1
作者 Yi-qing Yin Li-fang Wang +3 位作者 Chao Chen Teng Gao Zi-fang Zhao Cheng-hui Li 《Neural Regeneration Research》 SCIE CAS CSCD 2016年第12期1951-1955,共5页
Isoflurane is a widely used inhaled anesthetic in the clinical setting. However, the mechanism underlying its effect on consciousness is under discussion. Therefore, we investigated the effect of isoflurane on the hip... Isoflurane is a widely used inhaled anesthetic in the clinical setting. However, the mechanism underlying its effect on consciousness is under discussion. Therefore, we investigated the effect of isoflurane on the hippocampus and cortex using an in vivo field recording approach. Our results showed that 1.3%, 0.8%, and 0.4% isoflurane exerted an inhibitory influence on the mouse hippocampus and cortex. Further, high frequency bands in the cortex and hippocampus showed greater suppression with increasing isoflurane concentration. Our findings suggest that in vivo field recordings can monitor the effect of isoflurane anesthesia on the mouse cortex and hippocampus. 展开更多
关键词 nerve regeneration neurons isoflurane patch clamp cell membrane synaptic response inhalational anesthesia electrophysiology
下载PDF
Functional proteomics of adenosine triphosphatase system in the rat striatum during aging
2
作者 Roberto Federico Villa Federica Ferrari Antonella Gorini 《Neural Regeneration Research》 SCIE CAS CSCD 2012年第1期6-12,共7页
The maximum rates of adenosine triphosphatase (ATPase) systems related to energy consumption were systematically evaluated in synaptic plasma membranes isolated from the striata of male Wistar rats aged 2, 6, 12, 18... The maximum rates of adenosine triphosphatase (ATPase) systems related to energy consumption were systematically evaluated in synaptic plasma membranes isolated from the striata of male Wistar rats aged 2, 6, 12, 18, and 24 months, because of their key role in presynaptic nerve ending homeostasis. The following enzyme activities were evaluated: sodium-potassium-magnesium adenosine triphosphatase (Na^+, K^+, Mg^2+-ATPase); ouabain-insensitive magnesium adenosine triphosphatase (Mg^2+-ATPase); sodium-potassium adenosine triphosphatase (Na^+, K^+-ATPase); direct magnesium adenosine triphosphatase (Mg^2+-ATPase); calcium-magnesium adenosine triphosphatase (Ca^2+, Mg^2+-ATPase); and acetylcholinesterase. The results showed that Na~, K+-ATPase decreased at 18 and 24 months, Ca^2+, Mg^2+-ATPase and acetylcholinesterase decreased from 6 months, while Mg^2+-ATPase was unmodified. Therefore, ATPases vary independently during aging, suggesting that the ATPase enzyme systems are of neuropathological and pharmacological importance. This could be considered as an experimental model to study regeneration processes, because of the age-dependent modifications of specific synaptic plasma membranes. ATPases cause selective changes in some cerebral functions, especially bioenergetic systems. This could be of physiopathological significance, particularly in many central nervous system diseases, where, during regenerative processes, energy availability is essential. 展开更多
关键词 ATPASE synaptic plasma membranes AGING STRIATUM functional proteomics
下载PDF
上一页 1 下一页 到第
使用帮助 返回顶部