Objective and methods To evaluate synaptic changes using synaptophysin immunohistochemstry in rat and mouse, which spinal cords were subjected to graded compression trauma at the level of Th8-9. Result...Objective and methods To evaluate synaptic changes using synaptophysin immunohistochemstry in rat and mouse, which spinal cords were subjected to graded compression trauma at the level of Th8-9. Results Normal animals showed numerous fine dots of synaptophysin immunoreactivity in the gray matter. An increase in synaptophysin immunoreactivity was observed in the neuropil and synapses at the surface of motor neurons of the anterior horns in the ThS-9 segments lost immunoreactivity at 4-hour point after trauma. The immunoreactive synapses reappeared around motor neurons at 9-day point. Unexpected accumulation of synaptophysin immunoreactivity occurred in injured axons of the white matter of the compressed spinal cord. Conclusion Synaptic changes were important components of secondary injuries in spinal cord trauma. Loss of synapses on motor neurons may be one of the factors causing motor dysfunction of hind limbs and formation of new synapses may play an import,ant role in recovery of motor function. Synaptophysin immunohistochemistry is also a good tool for studies of axonal swellings in spinal cord injuries.展开更多
BACKGROUND: The change in expression of synaptophysin (Syp) and postsynaptic density-95 (PSD-95) alters after cerebral infarction, and the plasticity of synapses contributes greatly to nerve function recovery. Ch...BACKGROUND: The change in expression of synaptophysin (Syp) and postsynaptic density-95 (PSD-95) alters after cerebral infarction, and the plasticity of synapses contributes greatly to nerve function recovery. Chinese medicinal substances may play an important role in the expression of Syp and PSD-95. OBJECTIVE: To observe the effect of Panaxtriol Saponins (PTS), an active component in Sanqi tongshu capsules, on the expression of Syp and PSD-95 after cerebral infarction at different time points in rats, so as to examine the cerebral function remodeling mechanism. DESIGN, TIME AND SETTING: A randomized and controlled observation which was performed in Dongzhimen Hospital, Beijing University of Traditional Chinese Medicine from January to March, 2007. MATERIALS: Twenty-six healthy male Sprague Dawley rats were used to establish middle cerebral artery occlusion based on the Longa method. Sanqi tongshu capsules (containing 100 mg PTS per tablet) were provided by the Chengdu Huashen Group and nimodipine tablets (30 mg) by Tianjin Zhongyang Pharmaceutical Co., Ltd. METHODS: Twenty-six rats were randomly divided into an operation group (n = 21 ) and a control group (n = 5). The operation group underwent the EZ Longa procedure to make the middle cerebral artery occlusion model. After surgery rats were randomly divided into a model group, a PTS group and a nimodipine group, with seven rats in each group. Rats were intragastrically administrated with saline (2 mL/d) in the model group, with Sanqi tongshu capsule (5.4 mg/100 g/d) in the PTS group, and with nimodipine (1.73 mg/100 g/d) in the nimodipine group. Rats in the control group did not undergo model establishment and drug administration. MAIN OUTCOME MEASURES: The expressions of Syp and PSD-95 were measured by immunohistochemical and image analysis at days 3, 7 and 28 after the operation. RESULTS: The expression of Syp and PSD-95 in the operation group was significantly lower than in the control group at days 3, 7, 28 postoperatively (P 〈 0.05). The expression of Syp and PSD-95 in the PTS group and nimodipine group was significantly higher than in the model group at day 28 postoperatively (P 〈 0.05-0.01). Additionally, after PTS and nimodipine treatment at different intervals, the expression of Syp and PSD-95 at day 28 postoperatively was significantly higher than those at days 3 and 7 postoperatively, respectively (P 〈 0.01). CONCLUSION: PTS can promote the expression of Syp and PSD-95, i.e. the remodeling process of synapses, after cerebral infarction at different time points in rats, which contributes to cerebral function remodeling.展开更多
Sanjiao acupuncture and HuangDiSan can promote the proliferation, migration and differentiation of exogenous neural stem cells in senescence-accelerated mouse prone 8 (SAMP8) mice and can improve learning and memory...Sanjiao acupuncture and HuangDiSan can promote the proliferation, migration and differentiation of exogenous neural stem cells in senescence-accelerated mouse prone 8 (SAMP8) mice and can improve learning and memory impairment and behavioral function in dementia-model mice. Thus, we sought to determine whether Sanjiao acupuncture and HuangDiSan can elevate the effect of neural stem cell transplantation in Alzheimer’s disease model mice. Sanjiao acupuncture was used to stimulate Danzhong (CV17), Zhongwan (CV12),Qihai (CV6), bilateral Xuehai (SP10) and bilateral Zusanli (ST36) 15 days before and after implantation of neural stem cells (5 × 10^5) into the hippocampal dentate gyrus of SAMP8 mice. Simultaneously, 0.2 mL HuangDiSan, containing Rehmannia Root and Chinese Angelica,was intragastrically administered. Our results demonstrated that compared with mice undergoing neural stem cell transplantation alone,learning ability was significantly improved and synaptophysin mRNA and protein levels were greatly increased in the hippocampus of mice undergoing both Sanjiao acupuncture and intragastric administration of HuangDiSan. We conclude that the combination of Sanjiao acupuncture and HuangDiSan can effectively improve dementia symptoms in mice, and the mechanism of this action might be related to the regulation of synaptophysin expression.展开更多
BACKGROUND Synaptophysin plays a key role in synaptic development and plasticity of neurons and is closely related to the cognitive process of Alzheimer’s disease(AD)patients.Exogenous neural stem cells(NSCs)improve ...BACKGROUND Synaptophysin plays a key role in synaptic development and plasticity of neurons and is closely related to the cognitive process of Alzheimer’s disease(AD)patients.Exogenous neural stem cells(NSCs)improve the damaged nerve function.The effects of Sanjiao acupuncture on cognitive impairment may be related to the regulation of the NSC microenvironment.AIM To explore the anti-dementia mechanism of acupuncture by regulating the NSC microenvironment.METHODS NSCs were isolated from pregnant senescence-accelerated mouse resistant 1(SAMR1)mice,labeled with BrdU,and injected into the hippocampus of senescence-accelerated mouse prone 8(SAMP8)mice.Eight-month-old senescence-accelerated mice(SAM)were randomly divided into six groups:SAMR1(RC),SAMP8(PC),sham transplantation(PS),NSC transplantation(PT),NSC transplantation with acupuncture(PTA),and NSC transplantation with nonacupoint acupuncture(PTN).Morris water maze test was used to study the learning and memory ability of mice after NSC transplantation.Hematoxylin-eosin staining and immunofluorescence were used to observe the histopathological changes and NSC proliferation in mice.A co-culture model of hippocampal slices and NSCs was established in vitro,and the synaptophysin expression in the hippocampal microenvironment of mice was observed by flow cytometry after acupuncture treatment.RESULTS Morris water maze test showed significant cognitive impairment of learning and memory in 8-mo-old SAMP8,which improved in all the NSC transplantation groups.The behavioral change in the PTA group was stronger than those in the other two groups(P<0.05).Histopathologically,the hippocampal structure was clear,the cell arrangement was dense and orderly,and the necrosis of cells in CA1 and CA3 areas was significantly reduced in the PTA group when compared with the PC group.The BrdU-positive proliferating cells were found in NSC hippocampal transplantation groups,and the number increased significantly in the PTA group than in the PT and PTN groups(P<0.05).Flow cytometry showed that after co-culture of NSCs with hippocampal slices in vitro,the synaptophysin expression in the PC group decreased in comparison to the RC group,that in PT,PTA,and PTN groups increased as compared to the PC group,and that in the PTA group increased significantly as compared to the PTN group with acupointrelated specificity(P<0.05).CONCLUSION Acupuncture may promote nerve regeneration and synaptogenesis in SAMP8 mice by regulating the microenvironment of NSC transplantation to improve the nerve activity and promote the recovery of AD-damaged cells.展开更多
BACKGROUND: Central nervous system axons regenerate poorly following neonatal hypoxic-ischemic brain damage (HIBD), partly due to inhibitors, such as Nogo-A. Very few studies have addressed the regulation of Nogo-A...BACKGROUND: Central nervous system axons regenerate poorly following neonatal hypoxic-ischemic brain damage (HIBD), partly due to inhibitors, such as Nogo-A. Very few studies have addressed the regulation of Nogo-A in neonatal rats following HIBD. However, numerous studies have shown that ephedrine accelerates neuronal remodeling and promotes recovery of neural function in neonatal rats following HIBD. OBJECTIVE: To investigate the effects of ephedrine on expression of Nogo-A and synaptophysin in brain tissues of neonatal rats following HIBD. DESIGN, TIME AND SETTING: A completely randomized, controlled study was performed at the Immunohistochemistry Laboratory of the Research Institute of Pediatrics, Children's Hospital of Chongqing Medical University from August 2008 to March 2009. MATERIALS: Ephedrine hydrochloride (Chifeng Pharmaceutical Group, China), rabbit anti-Nogo-A polyclonal antibody (Abcam, UK), and rabbit anti-synaptophysin polyclonal antibody (Lab Vision, USA) were used in this study. METHODS: A total of 96 healthy, neonatal, Sprague Dawley rats were randomly assigned to three groups (n = 32): sham operation, HIBD, and ephedrine. The HIBD model was established by permanent occlusion of the left common carotid artery, followed by 2 hours of hypoxia (8% oxygen and 92% nitrogen). In the sham operation group, the left common carotid artery was exposed, but was not ligated or subjected to hypoxia. Rats in the ephedrine group were intraperitoneally injected with ephedrine immediately following HIBD, with 1.5 mg/kg each time. Rats in the sham operation and HIBD groups were injected with an equal volume of saline. All neonatal rats were treated once daily for 7 days. MAIN OUTCOME MEASURES: Histopathological damage to the cortex and hippocampus was determined by hematoxylin-eosin staining. Expression of Nogo-A and synaptophysin was detected using immunohistochemical staining. RESULTS: Neuronal degeneration and edema were observed in the hypoxJc-Jschemic cortex and hippocampus by hematoxylin-eosin staining. Compared with the sham operation group, the levels of Nogo-A significantly increased in the HIBD group at various time points (P 〈 0.01). Nogo-A expression was significantly reduced in the ephedrine group compared with the HIBD group (P 〈 0.01). Synaptophysin expression was significantly decreased in the hypoxic-ischemJc cortex, compared with the sham operation group (P 〈 0.01). Synaptophysin levels were significantly increased in the ephedrine group, compared with the HIBD group (P 〈 0.01). CONCLUSION: Altered Nogo-A expression was associated with inversely altered synaptophysin expression. The use of ephedrine normalized expression levels of Nogo-A and synaptophysin following HIBD.展开更多
The aim of the present study was to investigate the effect of "nourishing liver and kidney" acupuncture therapy on motor and cognitive deficits,and the underlying mechanism following cerebral ischemia-reperfusion(...The aim of the present study was to investigate the effect of "nourishing liver and kidney" acupuncture therapy on motor and cognitive deficits,and the underlying mechanism following cerebral ischemia-reperfusion(I/R) via increasing the expression of brain derived neurotrophic factor(BDNF) and synaptophysin(SYN) in the hippocampus.Healthy adult male SD rats were randomly divided into sham operation group(n=51),model group(n=51),acupuncture group(n=51) and acupuncture control group(n=51).The middle cerebral I/R model was established.Acupunctures were performed in the acupuncture group and acupuncture control group at acupoints of Taixi(K103),Taichong(ST09) of both sides,for 30 min once daily every morning.The animals in the sham operation group and model group were conventionally fed in the cage,without any intervention therapy.The rats of each group were assessed with modified neurological severity scores(m NSS).The expression of BDNF and SYN in the hippocampus was detected by immunohistochemical SP method and the synaptic structure in hippocampus area was assessed morphologically and quantitatively at the 3rd,7th and 14 th day.The Morris water Maze(MWM) test was used to evaluate the rats' learning and memory abilities on the 15 th day after acupuncture.The animals in the acupuncture control group and sham operation group presented no neurological deficit.In the acupuncture group,the nerve functional recovery was significantly better than that in the model group at the 7th and 14 th day after modeling.The average MWM escape latency in the acupuncture group was shorter than that in the model group at the 3rd,4th and 5th day.The number of crossings of the platform quadrant in the acupuncture group was significantly more than that in the model group.At the each time point,the expression levels of BDNF and SYN in the hippocampal regions increased significantly in the model group as compared with the sham operation group and the acupuncture control group.In the acupuncture group,the expression levels of BDNF at the 7th and 14 th day increased more significantly than those in the model group.In the acupuncture group,the expression levels of SYN at the each time point increased more significantly than those in the model group.The post-synaptic density(PSD) was significantly increased and the synapse cleft width was narrowed in the acupuncture group as compared with other groups.The synaptic curvatures were improved obviously in the acupuncture group in contrast to the model group.It was concluded that the "nourishing liver and kidney" acupuncture therapy has positive effects on behavioral recovery,as well as learning and memory abilities,probably by promoting the expression of BDNF and SYN,and synaptic structure reconstruction in the ipsilateral hippocampus after I/R in rats.The "nourishing liver and kidney" acupuncture therapy can promote the functional recovery in rats after cerebral ischemia injury.展开更多
The present study was designed to determine microtubule-associated protein-2 and synaptophysin expression in the hippocampal CA3 region in a rat model of middle cerebral artery occlusion. The rats were treated with ac...The present study was designed to determine microtubule-associated protein-2 and synaptophysin expression in the hippocampal CA3 region in a rat model of middle cerebral artery occlusion. The rats were treated with acupuncture at Baihui (GV 20), Qubin (GB 7), and Qianding (GV 21) points, in addition to exercise training. Results were compared with rats undergoing exercise training only. The Y-maze method and immunohistochemistry revealed decreased error frequency of passing through Y-maze, as well as significantly increased microtubule-associated protein-2 and synaptophysin expression, in the acupuncture with exercise training group compared with the model and exercise training groups after 5 weeks. Microtubule-associated protein-2 and synaptophysin expressions negatively correlated with error frequency of passing through the Y-maze. These results suggested that acupuncture combined with exercise training improved learning and memory functions in a rat model of cerebral infarction. The mechanisms of action were hypothesized to be associated with dendritic or synaptic plasticity in the ipsilateral hippocampal CA3 region.展开更多
BACKGROUND: Phytoestrogen, derived from plants, is an estrogen-like element, and is effective and safe for estrogen replacement. OBJECTIVE: To compare the interventional effects of genistein and 17 S-estradiol on le...BACKGROUND: Phytoestrogen, derived from plants, is an estrogen-like element, and is effective and safe for estrogen replacement. OBJECTIVE: To compare the interventional effects of genistein and 17 S-estradiol on learning and memory and synaptophysin (SYN) expression in the hippocampus of ovariectomized rats.DESIGN: Randomized controlled animal study.SETTING: Department of Neurology, the Third Affiliated Hospital, Xiangya Medical College, Central South University. MATERIALS: 130 healthy female Sprague Dawley (SD) rats, 6 months old and weighing (293.1 ± 10.2) g, were provided by the Second Xiangya Hospital of Central South University. This animal experiment received confirmed consent from the local ethics committee. All rats were randomly divided into 5 groups, including baseline group (n= 10), sham operation group (n = 30), ovariectomized group (n = 30), genistein group (n = 30), and 17 β -estradiol group (n = 30). Rats in the latter four groups were observed for 3 weeks (n = 10) and for 15 weeks (n = 20) after model establishment. METHODS: This study was performed at the Department of Endocrinology, the Second Affiliated Hospital, Xiangya Medical College, Central South University from August 2005 to January 2006. Animals were not submitted to any treatment in the baseline group, but anesthetized and sacrificed at the 7 months of age. After anesthesia in the ovariectomized, genistein, and 17 S-estradiol groups, both ovaries were separated and resected to establish an ovariectomized model. The same volume of fat was resected in the sham operation group. After surgery, rats were intraperitoneally injected with 5 mg/kg genistein in the genistein group,10μg/kg 17 β -estradiol in the 17 β-estradiol group, and 0.1 mL/100 g dimethyl sulfoxide (DMSO)/polyethylene glycol (PEG)-200 stock solution in the sham operation and ovariectomized groups once a day until one day before sacrifice. MAIN OUTCOME MEASURES:① Learning and memory changes of SD rats were detected using water maze behavioral testing 3 and 15 weeks after surgery. ② SYN expression in the hippocampus was measured using immunohistochemistry. RESULTS: A total of 16 out of 130 rats died due to infection, and 114 rats were included in the final analysis. ① Comparison of water maze results from the five groups: by 3 and 15 weeks after surgery, escape latency was prolonged and platform-crossing times decreased in the ovariectomized group compared to the baseline, genistein, 17 β-estradiol, and sham operation groups (t = 4.17 14.64, P 〈 0.05). However, there were no significant differences in escape latency and platform-crossing times among the sham operation, genistein, and 17 S-estradiol groups (P 〉 0.05). ② Distribution and quantity of SYN immunoreactive products in hippocampus: SYN-immunoreactive cells stained darkly in the baseline and sham operation groups, but were lightly stained in the genistein, 17 S -estradiol, and ovariectomized groups. In particular, SYN-immunoreactive cells stained lightly in the ovariectomized group 15 weeks after surgery. SYN correction gray values in hippocampal sub-regions, especially in the mossy fiber layer of the CA3 region, of the ovariectomized group was lower compared to the baseline, sham operation, 17 β -estradiol, and genistein groups (t = 12.57 23.92, P 〈 0.05) 15 weeks after surgery. However, there were no significant differences in SYN correction gray values among the baseline, sham operation, 17 β -estradiol and genistein groups (P 〉 0.05). CONCLUSION: Genistein or 17 β -estradiol supplemental therapy antagonizes memory deterioration, due to endogenous estrogen deficiency and blocks the decrease of SYN expression in the hippocampus. The effect of genistein is similar to 17 β -estradiol.展开更多
The present study observed sciatic nerve and gastrocnemius muscle changes in denervated rats using morphology methods, and assessed expression of perlecan, an extracellular matrix component, which is located at the sk...The present study observed sciatic nerve and gastrocnemius muscle changes in denervated rats using morphology methods, and assessed expression of perlecan, an extracellular matrix component, which is located at the skeletal muscle cell surface as acetylcholine esterase, as well as synaptophysin, a synaptic marker. Results showed degeneration and inflammation following transection of the sciatic nerve. In addition, the sciatic nerve-dominated skeletal muscle degenerated with mild inflammation, indicating that skeletal muscle atrophy primarily contributed to denervation-induced nutritional disturbances. With prolonged injury time (1-4 weeks post-injury), perlecan expression gradually decreased and reached the lowest level at 4 weeks, but synaptophysin expression remained unchanged after denervation. Results suggested that perlecan expression was more sensitive to denervation and reflected regional extracellular matrix changes following denervation.展开更多
The present study stimulated Baihui (DU 20) and Dazhui (DU 14) acupoints in a rat model of vascular dementia with electroacupuncture to investigate changes in long-term potentiation and synaptophysin expression in...The present study stimulated Baihui (DU 20) and Dazhui (DU 14) acupoints in a rat model of vascular dementia with electroacupuncture to investigate changes in long-term potentiation and synaptophysin expression in the hippocampus. The results revealed that synaptophysin expression in brain tissues was increased after electroacupuncture. After high4requency stimulation, the population spike latency was shortened and the excitatory postsynaptic potential slope and population spike amplitude were increased. In addition, cognitive function was enhanced, similar to the effects of intragastric perfusion of nimodipine. The results indicated that electroacupuncture at Baihui and Dazhui acupoints can improve learning and memory functions of a rat model of vascular dementia by promoting synaptophysin expression, enhancing hippocampal synaptic plasticity and accelerating synaptic transmission.展开更多
Xuefu Zhuyu decoction has been used for treating traumatic brain injury and improving post-traumatic dysfunction, but its mechanism of action needs further investigation. This study established rat models of traumatic...Xuefu Zhuyu decoction has been used for treating traumatic brain injury and improving post-traumatic dysfunction, but its mechanism of action needs further investigation. This study established rat models of traumatic brain injury by controlled cortical impact. Rat models were intragastrically administered 9 and 18 g/kg Xuefu Zhuyu decoction once a day for 14 or 21 days. Changes in neurological function were assessed by modified neurological severity scores and the Morris water maze. Immunohistochemistry, western blot assay, and re- verse-transcription polymerase chain reaction were used to analyze synapsin protein and mRNA expression at the injury site of rats. Our results showed that Xuefu Zhuyu decoction visibly improved neurological function of rats with traumatic brain injury. These changes were accompanied by increased expression of synaptophysin, synapsin I, and postsynaptic density protein-95 protein and mRNA in a dose-de- pendent manner. These findings indicate that Xuefu Zhuyu decoction increases synapsin expression and improves neurological deficits alder traumatic brain injury.展开更多
Cerebral ischemia activates an endogenous repair program that induces plastic changes in neurons. In this study, we investigated the effects of environmental enrichment on spatial learning and memory as well as on syn...Cerebral ischemia activates an endogenous repair program that induces plastic changes in neurons. In this study, we investigated the effects of environmental enrichment on spatial learning and memory as well as on synaptic remodeling in a mouse model of chronic cerebral ischemia, produced by subjecting adult male C57 BL/6 mice to permanent left middle cerebral artery occlusion. Three days postoperatively, mice were randomly assigned to the environmental enrichment and standard housing groups. Mice in the standard housing group were housed and fed a standard diet. Mice in the environmental enrichment group were housed in a cage with various toys and fed a standard diet. Then, 28 days postoperatively, spatial learning and memory were tested using the Morris water maze. The expression levels of growth-associated protein 43, synaptophysin and postsynaptic density protein 95 in the hippocampus were analyzed by western blot assay. The number of synapses was evaluated by electron microscopy. In the water maze test, mice in the environmental enrichment group had a shorter escape latency, traveled markedly longer distances, spent more time in the correct quadrant(northeast zone), and had a higher frequency of crossings compared with the standard housing group. The expression levels of growth-associated protein 43, synaptophysin and postsynaptic density protein 95 were substantially upregulated in the hippocampus in the environmental enrichment group compared with the standard housing group. Furthermore, electron microscopy revealed that environmental enrichment increased the number of synapses in the hippocampal CA1 region. Collectively, these findings suggest that environmental enrichment ameliorates the spatial learning and memory impairment induced by permanent middle cerebral artery occlusion. Environmental enrichment in mice with cerebral ischemia likely promotes cognitive recovery by inducing plastic changes in synapses.展开更多
A rat model of acute high intraocular pressure was established by injecting saline into the anterior chamber of the left eye. Synaptophysin expression was increased in the inner plexiform layer at 2 hours following in...A rat model of acute high intraocular pressure was established by injecting saline into the anterior chamber of the left eye. Synaptophysin expression was increased in the inner plexiform layer at 2 hours following injury, and was widely distributed in the outer plexiform layer at 3-7 days, and then decreased to the normal level at 14 days. This suggests that expression of this presynaptic functional protein experienced spatiotemporal alterations after elevation of intraocular pressure. There was no significant change in the fluorescence intensity and distribution pattern for synapse-associated protein 102 following elevated intraocular pressure. Synapse-associated protein 102 immunoreactivity was confined to the outer plexiform layer, while synaptophysin immunoreactivity spread into the outer plexiform layer and the outer nuclear layer at 3 and 7 days following injury. These alterations in presynaptic elements were not accompanied by changes in postsynaptic components.展开更多
In this study, a combination of growth factors was used to induce bone marrow mesenchymal stem cells differentiation into neuron-like cells, in a broader attempt to observe the role of thrombospondin 1 in synapse form...In this study, a combination of growth factors was used to induce bone marrow mesenchymal stem cells differentiation into neuron-like cells, in a broader attempt to observe the role of thrombospondin 1 in synapse formation. Results showed that there was no significant difference in the differentiation rate of neuron-like cells between bone marrow mesenchymal stem cells with thrombospondin induction and those without. However, the cell shape was more complex and the neurites were dendritic, with unipolar, bipolar or multipolar morphologies, after induction with thrombospondin 1. The induced cells were similar in morphology to normal neurites. Immunohistochemical staining showed that the number of positive cells for postsynaptic density protein 95 and synaptophysin 1 protein was significantly increased after induction with thrombospondin 1. These findings indicate that thrombospondin 1 promotes synapse formation in neuron-like cells that are differentiated from bone marrow mesenchymal stem cells.展开更多
基金This study was approved by the Uppsala Ethical Committee for Animal Research. It was supported by grants from the Swedish Association of Neurologically Disabled the Swedish Society for Medical Research (project no.950006) and the National Natural Scien
文摘Objective and methods To evaluate synaptic changes using synaptophysin immunohistochemstry in rat and mouse, which spinal cords were subjected to graded compression trauma at the level of Th8-9. Results Normal animals showed numerous fine dots of synaptophysin immunoreactivity in the gray matter. An increase in synaptophysin immunoreactivity was observed in the neuropil and synapses at the surface of motor neurons of the anterior horns in the ThS-9 segments lost immunoreactivity at 4-hour point after trauma. The immunoreactive synapses reappeared around motor neurons at 9-day point. Unexpected accumulation of synaptophysin immunoreactivity occurred in injured axons of the white matter of the compressed spinal cord. Conclusion Synaptic changes were important components of secondary injuries in spinal cord trauma. Loss of synapses on motor neurons may be one of the factors causing motor dysfunction of hind limbs and formation of new synapses may play an import,ant role in recovery of motor function. Synaptophysin immunohistochemistry is also a good tool for studies of axonal swellings in spinal cord injuries.
基金the National Natural Science Foundation of China,No.30472214
文摘BACKGROUND: The change in expression of synaptophysin (Syp) and postsynaptic density-95 (PSD-95) alters after cerebral infarction, and the plasticity of synapses contributes greatly to nerve function recovery. Chinese medicinal substances may play an important role in the expression of Syp and PSD-95. OBJECTIVE: To observe the effect of Panaxtriol Saponins (PTS), an active component in Sanqi tongshu capsules, on the expression of Syp and PSD-95 after cerebral infarction at different time points in rats, so as to examine the cerebral function remodeling mechanism. DESIGN, TIME AND SETTING: A randomized and controlled observation which was performed in Dongzhimen Hospital, Beijing University of Traditional Chinese Medicine from January to March, 2007. MATERIALS: Twenty-six healthy male Sprague Dawley rats were used to establish middle cerebral artery occlusion based on the Longa method. Sanqi tongshu capsules (containing 100 mg PTS per tablet) were provided by the Chengdu Huashen Group and nimodipine tablets (30 mg) by Tianjin Zhongyang Pharmaceutical Co., Ltd. METHODS: Twenty-six rats were randomly divided into an operation group (n = 21 ) and a control group (n = 5). The operation group underwent the EZ Longa procedure to make the middle cerebral artery occlusion model. After surgery rats were randomly divided into a model group, a PTS group and a nimodipine group, with seven rats in each group. Rats were intragastrically administrated with saline (2 mL/d) in the model group, with Sanqi tongshu capsule (5.4 mg/100 g/d) in the PTS group, and with nimodipine (1.73 mg/100 g/d) in the nimodipine group. Rats in the control group did not undergo model establishment and drug administration. MAIN OUTCOME MEASURES: The expressions of Syp and PSD-95 were measured by immunohistochemical and image analysis at days 3, 7 and 28 after the operation. RESULTS: The expression of Syp and PSD-95 in the operation group was significantly lower than in the control group at days 3, 7, 28 postoperatively (P 〈 0.05). The expression of Syp and PSD-95 in the PTS group and nimodipine group was significantly higher than in the model group at day 28 postoperatively (P 〈 0.05-0.01). Additionally, after PTS and nimodipine treatment at different intervals, the expression of Syp and PSD-95 at day 28 postoperatively was significantly higher than those at days 3 and 7 postoperatively, respectively (P 〈 0.01). CONCLUSION: PTS can promote the expression of Syp and PSD-95, i.e. the remodeling process of synapses, after cerebral infarction at different time points in rats, which contributes to cerebral function remodeling.
基金supported by the National Natural Science Foundation of China,No.81202740 and 81603686the Natural Science Foundation of Tianjin of China,No.17JCYBJC26200 and 12JCQNJC07400+1 种基金the Public Health Bureau Science and Technology Foundation of Tianjin of China,No.2014KY15the Specialized Research Foundation for the Doctoral Program of Higher Education,No.20121210120002
文摘Sanjiao acupuncture and HuangDiSan can promote the proliferation, migration and differentiation of exogenous neural stem cells in senescence-accelerated mouse prone 8 (SAMP8) mice and can improve learning and memory impairment and behavioral function in dementia-model mice. Thus, we sought to determine whether Sanjiao acupuncture and HuangDiSan can elevate the effect of neural stem cell transplantation in Alzheimer’s disease model mice. Sanjiao acupuncture was used to stimulate Danzhong (CV17), Zhongwan (CV12),Qihai (CV6), bilateral Xuehai (SP10) and bilateral Zusanli (ST36) 15 days before and after implantation of neural stem cells (5 × 10^5) into the hippocampal dentate gyrus of SAMP8 mice. Simultaneously, 0.2 mL HuangDiSan, containing Rehmannia Root and Chinese Angelica,was intragastrically administered. Our results demonstrated that compared with mice undergoing neural stem cell transplantation alone,learning ability was significantly improved and synaptophysin mRNA and protein levels were greatly increased in the hippocampus of mice undergoing both Sanjiao acupuncture and intragastric administration of HuangDiSan. We conclude that the combination of Sanjiao acupuncture and HuangDiSan can effectively improve dementia symptoms in mice, and the mechanism of this action might be related to the regulation of synaptophysin expression.
基金Supported by National Natural Science Foundation of China,No.81202740and Tianjin Natural Science Fund,No.17JCYBJC26200。
文摘BACKGROUND Synaptophysin plays a key role in synaptic development and plasticity of neurons and is closely related to the cognitive process of Alzheimer’s disease(AD)patients.Exogenous neural stem cells(NSCs)improve the damaged nerve function.The effects of Sanjiao acupuncture on cognitive impairment may be related to the regulation of the NSC microenvironment.AIM To explore the anti-dementia mechanism of acupuncture by regulating the NSC microenvironment.METHODS NSCs were isolated from pregnant senescence-accelerated mouse resistant 1(SAMR1)mice,labeled with BrdU,and injected into the hippocampus of senescence-accelerated mouse prone 8(SAMP8)mice.Eight-month-old senescence-accelerated mice(SAM)were randomly divided into six groups:SAMR1(RC),SAMP8(PC),sham transplantation(PS),NSC transplantation(PT),NSC transplantation with acupuncture(PTA),and NSC transplantation with nonacupoint acupuncture(PTN).Morris water maze test was used to study the learning and memory ability of mice after NSC transplantation.Hematoxylin-eosin staining and immunofluorescence were used to observe the histopathological changes and NSC proliferation in mice.A co-culture model of hippocampal slices and NSCs was established in vitro,and the synaptophysin expression in the hippocampal microenvironment of mice was observed by flow cytometry after acupuncture treatment.RESULTS Morris water maze test showed significant cognitive impairment of learning and memory in 8-mo-old SAMP8,which improved in all the NSC transplantation groups.The behavioral change in the PTA group was stronger than those in the other two groups(P<0.05).Histopathologically,the hippocampal structure was clear,the cell arrangement was dense and orderly,and the necrosis of cells in CA1 and CA3 areas was significantly reduced in the PTA group when compared with the PC group.The BrdU-positive proliferating cells were found in NSC hippocampal transplantation groups,and the number increased significantly in the PTA group than in the PT and PTN groups(P<0.05).Flow cytometry showed that after co-culture of NSCs with hippocampal slices in vitro,the synaptophysin expression in the PC group decreased in comparison to the RC group,that in PT,PTA,and PTN groups increased as compared to the PC group,and that in the PTA group increased significantly as compared to the PTN group with acupointrelated specificity(P<0.05).CONCLUSION Acupuncture may promote nerve regeneration and synaptogenesis in SAMP8 mice by regulating the microenvironment of NSC transplantation to improve the nerve activity and promote the recovery of AD-damaged cells.
基金the Scientific Research Program of Health Bureau of Chongqing City, No. [2007]1-07-2-153
文摘BACKGROUND: Central nervous system axons regenerate poorly following neonatal hypoxic-ischemic brain damage (HIBD), partly due to inhibitors, such as Nogo-A. Very few studies have addressed the regulation of Nogo-A in neonatal rats following HIBD. However, numerous studies have shown that ephedrine accelerates neuronal remodeling and promotes recovery of neural function in neonatal rats following HIBD. OBJECTIVE: To investigate the effects of ephedrine on expression of Nogo-A and synaptophysin in brain tissues of neonatal rats following HIBD. DESIGN, TIME AND SETTING: A completely randomized, controlled study was performed at the Immunohistochemistry Laboratory of the Research Institute of Pediatrics, Children's Hospital of Chongqing Medical University from August 2008 to March 2009. MATERIALS: Ephedrine hydrochloride (Chifeng Pharmaceutical Group, China), rabbit anti-Nogo-A polyclonal antibody (Abcam, UK), and rabbit anti-synaptophysin polyclonal antibody (Lab Vision, USA) were used in this study. METHODS: A total of 96 healthy, neonatal, Sprague Dawley rats were randomly assigned to three groups (n = 32): sham operation, HIBD, and ephedrine. The HIBD model was established by permanent occlusion of the left common carotid artery, followed by 2 hours of hypoxia (8% oxygen and 92% nitrogen). In the sham operation group, the left common carotid artery was exposed, but was not ligated or subjected to hypoxia. Rats in the ephedrine group were intraperitoneally injected with ephedrine immediately following HIBD, with 1.5 mg/kg each time. Rats in the sham operation and HIBD groups were injected with an equal volume of saline. All neonatal rats were treated once daily for 7 days. MAIN OUTCOME MEASURES: Histopathological damage to the cortex and hippocampus was determined by hematoxylin-eosin staining. Expression of Nogo-A and synaptophysin was detected using immunohistochemical staining. RESULTS: Neuronal degeneration and edema were observed in the hypoxJc-Jschemic cortex and hippocampus by hematoxylin-eosin staining. Compared with the sham operation group, the levels of Nogo-A significantly increased in the HIBD group at various time points (P 〈 0.01). Nogo-A expression was significantly reduced in the ephedrine group compared with the HIBD group (P 〈 0.01). Synaptophysin expression was significantly decreased in the hypoxic-ischemJc cortex, compared with the sham operation group (P 〈 0.01). Synaptophysin levels were significantly increased in the ephedrine group, compared with the HIBD group (P 〈 0.01). CONCLUSION: Altered Nogo-A expression was associated with inversely altered synaptophysin expression. The use of ephedrine normalized expression levels of Nogo-A and synaptophysin following HIBD.
基金supported by grants from Ministry of Human Resources and Social Security of the People’s Republic of China:Returned Overseas Personnel Science and Technology Activities Project Merit Funding(No.2015192)
文摘The aim of the present study was to investigate the effect of "nourishing liver and kidney" acupuncture therapy on motor and cognitive deficits,and the underlying mechanism following cerebral ischemia-reperfusion(I/R) via increasing the expression of brain derived neurotrophic factor(BDNF) and synaptophysin(SYN) in the hippocampus.Healthy adult male SD rats were randomly divided into sham operation group(n=51),model group(n=51),acupuncture group(n=51) and acupuncture control group(n=51).The middle cerebral I/R model was established.Acupunctures were performed in the acupuncture group and acupuncture control group at acupoints of Taixi(K103),Taichong(ST09) of both sides,for 30 min once daily every morning.The animals in the sham operation group and model group were conventionally fed in the cage,without any intervention therapy.The rats of each group were assessed with modified neurological severity scores(m NSS).The expression of BDNF and SYN in the hippocampus was detected by immunohistochemical SP method and the synaptic structure in hippocampus area was assessed morphologically and quantitatively at the 3rd,7th and 14 th day.The Morris water Maze(MWM) test was used to evaluate the rats' learning and memory abilities on the 15 th day after acupuncture.The animals in the acupuncture control group and sham operation group presented no neurological deficit.In the acupuncture group,the nerve functional recovery was significantly better than that in the model group at the 7th and 14 th day after modeling.The average MWM escape latency in the acupuncture group was shorter than that in the model group at the 3rd,4th and 5th day.The number of crossings of the platform quadrant in the acupuncture group was significantly more than that in the model group.At the each time point,the expression levels of BDNF and SYN in the hippocampal regions increased significantly in the model group as compared with the sham operation group and the acupuncture control group.In the acupuncture group,the expression levels of BDNF at the 7th and 14 th day increased more significantly than those in the model group.In the acupuncture group,the expression levels of SYN at the each time point increased more significantly than those in the model group.The post-synaptic density(PSD) was significantly increased and the synapse cleft width was narrowed in the acupuncture group as compared with other groups.The synaptic curvatures were improved obviously in the acupuncture group in contrast to the model group.It was concluded that the "nourishing liver and kidney" acupuncture therapy has positive effects on behavioral recovery,as well as learning and memory abilities,probably by promoting the expression of BDNF and SYN,and synaptic structure reconstruction in the ipsilateral hippocampus after I/R in rats.The "nourishing liver and kidney" acupuncture therapy can promote the functional recovery in rats after cerebral ischemia injury.
文摘The present study was designed to determine microtubule-associated protein-2 and synaptophysin expression in the hippocampal CA3 region in a rat model of middle cerebral artery occlusion. The rats were treated with acupuncture at Baihui (GV 20), Qubin (GB 7), and Qianding (GV 21) points, in addition to exercise training. Results were compared with rats undergoing exercise training only. The Y-maze method and immunohistochemistry revealed decreased error frequency of passing through Y-maze, as well as significantly increased microtubule-associated protein-2 and synaptophysin expression, in the acupuncture with exercise training group compared with the model and exercise training groups after 5 weeks. Microtubule-associated protein-2 and synaptophysin expressions negatively correlated with error frequency of passing through the Y-maze. These results suggested that acupuncture combined with exercise training improved learning and memory functions in a rat model of cerebral infarction. The mechanisms of action were hypothesized to be associated with dendritic or synaptic plasticity in the ipsilateral hippocampal CA3 region.
基金the grants from Hunan Science and Technology Bureau, No. 03SSY4028the grants from Hunan Administration Bureau of Public Health, No. B2006046the grants from Human Development Bureau, No. 2006-773
文摘BACKGROUND: Phytoestrogen, derived from plants, is an estrogen-like element, and is effective and safe for estrogen replacement. OBJECTIVE: To compare the interventional effects of genistein and 17 S-estradiol on learning and memory and synaptophysin (SYN) expression in the hippocampus of ovariectomized rats.DESIGN: Randomized controlled animal study.SETTING: Department of Neurology, the Third Affiliated Hospital, Xiangya Medical College, Central South University. MATERIALS: 130 healthy female Sprague Dawley (SD) rats, 6 months old and weighing (293.1 ± 10.2) g, were provided by the Second Xiangya Hospital of Central South University. This animal experiment received confirmed consent from the local ethics committee. All rats were randomly divided into 5 groups, including baseline group (n= 10), sham operation group (n = 30), ovariectomized group (n = 30), genistein group (n = 30), and 17 β -estradiol group (n = 30). Rats in the latter four groups were observed for 3 weeks (n = 10) and for 15 weeks (n = 20) after model establishment. METHODS: This study was performed at the Department of Endocrinology, the Second Affiliated Hospital, Xiangya Medical College, Central South University from August 2005 to January 2006. Animals were not submitted to any treatment in the baseline group, but anesthetized and sacrificed at the 7 months of age. After anesthesia in the ovariectomized, genistein, and 17 S-estradiol groups, both ovaries were separated and resected to establish an ovariectomized model. The same volume of fat was resected in the sham operation group. After surgery, rats were intraperitoneally injected with 5 mg/kg genistein in the genistein group,10μg/kg 17 β -estradiol in the 17 β-estradiol group, and 0.1 mL/100 g dimethyl sulfoxide (DMSO)/polyethylene glycol (PEG)-200 stock solution in the sham operation and ovariectomized groups once a day until one day before sacrifice. MAIN OUTCOME MEASURES:① Learning and memory changes of SD rats were detected using water maze behavioral testing 3 and 15 weeks after surgery. ② SYN expression in the hippocampus was measured using immunohistochemistry. RESULTS: A total of 16 out of 130 rats died due to infection, and 114 rats were included in the final analysis. ① Comparison of water maze results from the five groups: by 3 and 15 weeks after surgery, escape latency was prolonged and platform-crossing times decreased in the ovariectomized group compared to the baseline, genistein, 17 β-estradiol, and sham operation groups (t = 4.17 14.64, P 〈 0.05). However, there were no significant differences in escape latency and platform-crossing times among the sham operation, genistein, and 17 S-estradiol groups (P 〉 0.05). ② Distribution and quantity of SYN immunoreactive products in hippocampus: SYN-immunoreactive cells stained darkly in the baseline and sham operation groups, but were lightly stained in the genistein, 17 S -estradiol, and ovariectomized groups. In particular, SYN-immunoreactive cells stained lightly in the ovariectomized group 15 weeks after surgery. SYN correction gray values in hippocampal sub-regions, especially in the mossy fiber layer of the CA3 region, of the ovariectomized group was lower compared to the baseline, sham operation, 17 β -estradiol, and genistein groups (t = 12.57 23.92, P 〈 0.05) 15 weeks after surgery. However, there were no significant differences in SYN correction gray values among the baseline, sham operation, 17 β -estradiol and genistein groups (P 〉 0.05). CONCLUSION: Genistein or 17 β -estradiol supplemental therapy antagonizes memory deterioration, due to endogenous estrogen deficiency and blocks the decrease of SYN expression in the hippocampus. The effect of genistein is similar to 17 β -estradiol.
基金supported by the National Natural Science Foundation of China,No.30900300/C1002
文摘The present study observed sciatic nerve and gastrocnemius muscle changes in denervated rats using morphology methods, and assessed expression of perlecan, an extracellular matrix component, which is located at the skeletal muscle cell surface as acetylcholine esterase, as well as synaptophysin, a synaptic marker. Results showed degeneration and inflammation following transection of the sciatic nerve. In addition, the sciatic nerve-dominated skeletal muscle degenerated with mild inflammation, indicating that skeletal muscle atrophy primarily contributed to denervation-induced nutritional disturbances. With prolonged injury time (1-4 weeks post-injury), perlecan expression gradually decreased and reached the lowest level at 4 weeks, but synaptophysin expression remained unchanged after denervation. Results suggested that perlecan expression was more sensitive to denervation and reflected regional extracellular matrix changes following denervation.
基金the Natural Science Foundation of Zhejiang Province, No. Y208445 the Natural Science Foundation of Ningbo Science and Technology Bureau, No. 2009A610161 K.C. Wong Magna Fund from Ningbo University
文摘The present study stimulated Baihui (DU 20) and Dazhui (DU 14) acupoints in a rat model of vascular dementia with electroacupuncture to investigate changes in long-term potentiation and synaptophysin expression in the hippocampus. The results revealed that synaptophysin expression in brain tissues was increased after electroacupuncture. After high4requency stimulation, the population spike latency was shortened and the excitatory postsynaptic potential slope and population spike amplitude were increased. In addition, cognitive function was enhanced, similar to the effects of intragastric perfusion of nimodipine. The results indicated that electroacupuncture at Baihui and Dazhui acupoints can improve learning and memory functions of a rat model of vascular dementia by promoting synaptophysin expression, enhancing hippocampal synaptic plasticity and accelerating synaptic transmission.
基金supported by the National Natural Science Foundation of China,No.81673719,81173175 and 81303074a grant from China Postdoctoral Science Foundation,No.2016M600639 and 2017T100614
文摘Xuefu Zhuyu decoction has been used for treating traumatic brain injury and improving post-traumatic dysfunction, but its mechanism of action needs further investigation. This study established rat models of traumatic brain injury by controlled cortical impact. Rat models were intragastrically administered 9 and 18 g/kg Xuefu Zhuyu decoction once a day for 14 or 21 days. Changes in neurological function were assessed by modified neurological severity scores and the Morris water maze. Immunohistochemistry, western blot assay, and re- verse-transcription polymerase chain reaction were used to analyze synapsin protein and mRNA expression at the injury site of rats. Our results showed that Xuefu Zhuyu decoction visibly improved neurological function of rats with traumatic brain injury. These changes were accompanied by increased expression of synaptophysin, synapsin I, and postsynaptic density protein-95 protein and mRNA in a dose-de- pendent manner. These findings indicate that Xuefu Zhuyu decoction increases synapsin expression and improves neurological deficits alder traumatic brain injury.
基金supported by the National Natural Science Foundation of China,No.81672242(to YW)the Key Construction Projects of Shanghai Health and Family Planning on Weak Discipline,China,No.2015ZB0401(to YW)
文摘Cerebral ischemia activates an endogenous repair program that induces plastic changes in neurons. In this study, we investigated the effects of environmental enrichment on spatial learning and memory as well as on synaptic remodeling in a mouse model of chronic cerebral ischemia, produced by subjecting adult male C57 BL/6 mice to permanent left middle cerebral artery occlusion. Three days postoperatively, mice were randomly assigned to the environmental enrichment and standard housing groups. Mice in the standard housing group were housed and fed a standard diet. Mice in the environmental enrichment group were housed in a cage with various toys and fed a standard diet. Then, 28 days postoperatively, spatial learning and memory were tested using the Morris water maze. The expression levels of growth-associated protein 43, synaptophysin and postsynaptic density protein 95 in the hippocampus were analyzed by western blot assay. The number of synapses was evaluated by electron microscopy. In the water maze test, mice in the environmental enrichment group had a shorter escape latency, traveled markedly longer distances, spent more time in the correct quadrant(northeast zone), and had a higher frequency of crossings compared with the standard housing group. The expression levels of growth-associated protein 43, synaptophysin and postsynaptic density protein 95 were substantially upregulated in the hippocampus in the environmental enrichment group compared with the standard housing group. Furthermore, electron microscopy revealed that environmental enrichment increased the number of synapses in the hippocampal CA1 region. Collectively, these findings suggest that environmental enrichment ameliorates the spatial learning and memory impairment induced by permanent middle cerebral artery occlusion. Environmental enrichment in mice with cerebral ischemia likely promotes cognitive recovery by inducing plastic changes in synapses.
基金sponsored by the Ph.D.Programs Foundation of the Ministry of Education of China,No20090162110019the Natural Science Foundation of Hunan Province,No. 10JJ4023+1 种基金the Fundamental Research Funds for the Central Universities of China,No. 2011QNZT128Graduate Scientific Research Innovation Projects of Hunan Province in 2011,No. CX2011B047
文摘A rat model of acute high intraocular pressure was established by injecting saline into the anterior chamber of the left eye. Synaptophysin expression was increased in the inner plexiform layer at 2 hours following injury, and was widely distributed in the outer plexiform layer at 3-7 days, and then decreased to the normal level at 14 days. This suggests that expression of this presynaptic functional protein experienced spatiotemporal alterations after elevation of intraocular pressure. There was no significant change in the fluorescence intensity and distribution pattern for synapse-associated protein 102 following elevated intraocular pressure. Synapse-associated protein 102 immunoreactivity was confined to the outer plexiform layer, while synaptophysin immunoreactivity spread into the outer plexiform layer and the outer nuclear layer at 3 and 7 days following injury. These alterations in presynaptic elements were not accompanied by changes in postsynaptic components.
基金supported by the Natural Science Foundation of Guangdong Province, No. S2011010004096the Medical Scientific Research Foundation of Guangdong Province, No. A2010431 A2009477
文摘In this study, a combination of growth factors was used to induce bone marrow mesenchymal stem cells differentiation into neuron-like cells, in a broader attempt to observe the role of thrombospondin 1 in synapse formation. Results showed that there was no significant difference in the differentiation rate of neuron-like cells between bone marrow mesenchymal stem cells with thrombospondin induction and those without. However, the cell shape was more complex and the neurites were dendritic, with unipolar, bipolar or multipolar morphologies, after induction with thrombospondin 1. The induced cells were similar in morphology to normal neurites. Immunohistochemical staining showed that the number of positive cells for postsynaptic density protein 95 and synaptophysin 1 protein was significantly increased after induction with thrombospondin 1. These findings indicate that thrombospondin 1 promotes synapse formation in neuron-like cells that are differentiated from bone marrow mesenchymal stem cells.