期刊文献+
共找到1,727篇文章
< 1 2 87 >
每页显示 20 50 100
Do Planetary Transits Predict Synchronicity Experience?
1
作者 Robert G. Sacco 《Journal of Behavioral and Brain Science》 CAS 2023年第3期33-44,共12页
Synchronicity involves the experience of personal meaning entangled with ambiguous coincidences in time. Ambiguity results from incomplete information about the chances of various events occurring. The problem that th... Synchronicity involves the experience of personal meaning entangled with ambiguous coincidences in time. Ambiguity results from incomplete information about the chances of various events occurring. The problem that this study addresses is the lack of empirical research on synchronicity. This study sought to address this problem by exploring the astrological hypothesis that planetary transits predict synchronicity events. Synchronicities were compared with the probability distributions of planetary transits. In comparison with the base rate prediction, planetary transits were not a significant predictor of synchronicity events. The findings of this study provide new insight into the complex, multifaceted, and ambiguous phenomenon of synchronicity. The concept of ambiguity tolerance plays a significant role in synchronicity research since ambiguity cannot be completely eliminated. 展开更多
关键词 ASTROLOGY Fibonacci Numbers Planetary Transits synchronicity
下载PDF
Fibonacci Harmonics: A New Mathematical Model of Synchronicity
2
作者 Robert G. Sacco 《Applied Mathematics》 2018年第6期702-718,共17页
This article aims to provide a brief overview of the relevance of new findings about the Fibonacci Life Chart Method (FLCM) for understanding synchronicity. The FLCM is reviewed first, including an exposition of the g... This article aims to provide a brief overview of the relevance of new findings about the Fibonacci Life Chart Method (FLCM) for understanding synchronicity. The FLCM is reviewed first, including an exposition of the golden section model, and elaboration of a new harmonic model. The two models are then compared to illuminate several strengths and weaknesses in connection with the following four major criteria regarding synchronicity: explanatory adequacy;predictability of future synchronicities;simplicity of the model;and generalizability to other branches of knowledge. The review indicates that both models appear capable of simulating nonlinear and fractal dynamics. Hybrid approaches that combine both models are feasible and necessary for projects that aim to experimentally address synchronicity. 展开更多
关键词 synchronicity Dynamical Systems Brain Dynamics FIBONACCI Life CHART Method GOLDEN Section MODEL Harmonic MODEL
下载PDF
On the Jefimenko’s Non-Einsteinian Clocks and Synchronicity of Moving Clocks
3
作者 Andrew Chubykalo Augusto Espinoza 《Journal of Modern Physics》 2017年第4期439-447,共9页
In this work we analyze the concept of time dilation in its application to the rate of moving clocks. The rates of two equiform elementary electromagnetic clocks of different orientations relative to their direction o... In this work we analyze the concept of time dilation in its application to the rate of moving clocks. The rates of two equiform elementary electromagnetic clocks of different orientations relative to their direction of motion are computed on the basis of relativistic transformations of force and coordinates for the case when the clocks are at rest in a stationary reference frame and for the case when they are moving at constant speed relative to the stationary reference frame. It is shown that, although both clocks run slower when they are moving than when they are at rest, the rate of the moving clocks is affected by their orientation relative to their direction of motion, rather than by the kinematic (relativistic) time dilation as it is now generally assumed. The implication of this result for the experimental proofs of the existence of the kinematic the dilation is discussed. 展开更多
关键词 synchronicity TIME DILATION LENGTH CONTRACTION
下载PDF
Pulsed Doppler Tissue Imaging for Assessment of Left Ventricular Systolic and Diastolic Synchronicity in Normal Subjects
4
作者 杨莉 伍卫 +1 位作者 王景峰 张小玲 《South China Journal of Cardiology》 CAS 2006年第1期18-21,共4页
Objectives To quantitatively analyze the longitudinal myocardial systolic and diastolic velocities and time intervals of the left ventricle in normal subjects, and to explore the value of pulsed Doppler tissue imaging... Objectives To quantitatively analyze the longitudinal myocardial systolic and diastolic velocities and time intervals of the left ventricle in normal subjects, and to explore the value of pulsed Doppler tissue imaging (DTI) for the assessment of left ventricular systolic and diastolic synchronicity. Methods Twenty and six healthy subjects were studied by pulsed DTI. The septal and lateral, anterior and inferior walls of the left ventricle were displayed respectively, and basal and middle segments of each wall were selected for myocardial motion spectrum sampling. DTI parameters were: peak systolic myocardial velocity (s), regional pre-ejection period (PEP), time to the peak of s wave (Ts), regional ejection time (ET) ; peak early diastolic velocity (e), peak late diastolic velocity (a), e/a ratio, time to the beginning of e wave (QE), time to the peak of e wave (Te) and regional isovolumic relaxation time (IVRT). Results The e and e/a were significantly different among basal segments, and s and e/a were significantly different among middle segments, with the highest value in lateral segments and the lowest value in septal segments. The s, e and a were all significantly higher in basal segments than middle segments. None of the systolic time intervals (PEP, Ts and ET) and diastolic time intervals (QE, Te and IVRT) were significantly different among basal segments and middle segments, neither were they when basal segment was compared with middle segment. Conclusions In normal subjects, the longitudinal myocardial systolic and diastolic velocities of the left ventricle are not homogeneous, but the contraction and relaxation are highly synchronized. Pulsed DTI can be used to quantitatively analyze the systolic and diastolic synchronicity of the heart. 展开更多
关键词 Doppler tissue imaging Echocardiography synchronicity
下载PDF
The synchronicity and difference in the change of suspended sediment concentration in the Yangtze River Estuary 被引量:8
5
作者 YANG Yunping DENG Jinyun +2 位作者 ZHANG Mingjin LI Yitian LIU Wanli 《Journal of Geographical Sciences》 SCIE CSCD 2015年第4期399-416,共18页
The sediment discharge from the Yangtze River Basin has a stepwise decreasing trend in recent years. The impounding of the Three Gorges Reservoir exacerbated this de- creasing trend and affected the change of the susp... The sediment discharge from the Yangtze River Basin has a stepwise decreasing trend in recent years. The impounding of the Three Gorges Reservoir exacerbated this de- creasing trend and affected the change of the suspended sediment concentration (SSC) in the Yangtze River Estuary through the transmission effect. The SSC data of the Yangtze River Estuary during 1959-2012 showed that: (1) The SSC in the South Branch of the Yang- tze River in the estuary and in the off-shore sea area displayed decreasing trends and de- creased less towards the sea. At the same time, the difference in decreasing magnitude be- tween SSC and sediment discharge became bigger towards the sea. (2) For the North Branch the preferential flow did not change much but the SSC tended to decrease, which was mainly caused by the decrease of SSC in the South Branch and China East Sea. (3) Due to the de- creased runoff and the relatively strengthened tide, the peak area of the SSC in the bar shoal section in 2003-2012 moved inward for about 1/6 longitude unit compared with that in 1984-2002, and the inward-moving distance was in the order of flood season 〉 annual average 〉 dry season. (4) In the inlet of the South Passage, the SSC decreased mainly because the increase caused by resuspension and shore-groove exchange was less than the decrease caused by the sharp SSC decrease in the basin and the sea areas. The reverse was true in the middle section, where the SSC showed an increasing trend. (5) In the inlet of the North Passage, under the combined influence of decreased flow split and sediment split ratios, the decreased SSC in the basin and the sea area and decreased amount of resuspension, the SSC displayed a decreasing trend. In the middle section, because the increased amount caused by sediment going over the dyke was markedly more than the decreased amount caused by external environments, the SSC tended to increase. Holistically, the sharp decrease in sediment discharge caused synchronized SSC decreases in the Yangtze River Estuary. But there were still areas, where the SSC displayed increasing trends, indicatingsynchronicity and difference in the response of SSC to the sharp decrease in sediment discharge from the basin. 展开更多
关键词 suspended sediment concentration synchronicity DIFFERENCE sediment discharge Yangtze River Es-tuary
原文传递
Assessment of cardiac function and synchronicity in subjects with isolated bundle branch block using Doppler imaging 被引量:3
6
作者 NIU Hong-xia HUA Wei +5 位作者 ZHANG Shu SUN Xin WANG Fang-zheng CHEN Ke-ping WANG Hao CHEN Xin 《Chinese Medical Journal》 SCIE CAS CSCD 2006年第10期795-800,共6页
Background Using tissue Doppler imaging and conventional echocardiographic technique, we examined the cardiac function and synchronicity in individuals with isolated right bundle branch block (RBBB) or left bundle b... Background Using tissue Doppler imaging and conventional echocardiographic technique, we examined the cardiac function and synchronicity in individuals with isolated right bundle branch block (RBBB) or left bundle branch block (LBBB) and assessed the relationship between QRS duration and synchronicity. 展开更多
关键词 bundle branch block synchronicity cardiac function tissue Doppler imaging
原文传递
Ventricular synchronicity: observations comparing pulse flow and tissue Doppler assessment in a Chinese healthy adult cohort 被引量:2
7
作者 QUAN Xin ZHU Tian-gang +3 位作者 GUO Shi MA Jian-xin WANG Xin GUO Ji-hong 《Chinese Medical Journal》 SCIE CAS CSCD 2012年第1期27-32,共6页
Background Mechanical asynchrony is an important parameter in predicting the response to cardiac resynchronization therapy, but detailed knowledge about cardiac timing in healthy persons is scarce. Therefore, in the c... Background Mechanical asynchrony is an important parameter in predicting the response to cardiac resynchronization therapy, but detailed knowledge about cardiac timing in healthy persons is scarce. Therefore, in the current study, we sought to investigate the physiological status of interventricular synchronicity using pulse wave flow and tissue Doppler imaging in a healthy Chinese population. Methods Eighty-eight healthy volunteers underwent standard flow and tissue Doppler echocardiographic examinations. Ventricular inflow and outflow pulse wave flow Doppler patterns were recorded together with annulus pulse tissue Doppler imaging. Time intervals from the beginning of the QRS complex to the onset, peak and end of each wave were measured. Results The onsets of systole between left and right ventricles were highly synchronized by both imaging modalities. However, the left ventricle reached the peak flow ejection and peak mechanical contraction earlier than the right ventricle, (165.61±26.23) ms vs. (204.3±34.55) ms (P 〈0.01) and (133.62±26.19) ms vs. (191.25±38.47) ms (P 〈0.01). Time to peak early diastolic relaxation was earlier in the left ventricle than in the right heart, (500.23±56.52) ms vs. (524.94±47.42) ms (P 〈0.01 ). Conclusions Left and right ventricles were well synchronized at the onsets of systole and diastole even though interventricular peak systolic and peak early diastolic dyssynchrony was observed in healthy people by pulse wave Doppler imaging. In addition, diastolic timing events were slightly affected by age and gender. 展开更多
关键词 SYSTOLIC DIASTOLIC DOPPLER synchronicity
原文传递
The capital market spillover effect of product market advertising:Evidence from stock price synchronicity 被引量:1
8
作者 Yajie Chen Qinlin Zhong Fuxiu Jiang 《Frontiers of Business Research in China》 2020年第2期196-216,共21页
We analyze whether product market advertising has a spillover effect on stock price synchronicity by transmitting firm-specific information to the capital market and attracting more investor attention.Using a sample o... We analyze whether product market advertising has a spillover effect on stock price synchronicity by transmitting firm-specific information to the capital market and attracting more investor attention.Using a sample of Chinese listed firms from 2009 to 2017,we find that firms with greater advertising expenditures have lower stock price synchronicity.The results are robust after we address endogeneity concerns.In accord with our hypothesis that product market advertising increases the amount of firm-level information capitalized into stock prices through the information channel,we find that the impact of advertising on synchronicity is more pronounced for firms with a higher degree of information asymmetry and firms in the consumer-product industry.Further tests show that product market advertising enhances the ability of current period returns to reflect future earnings,and thus rules out that the negative relationship between advertising and synchronicity is driven by noise trading.Our results imply that product market advertising plays an informative role and improves information efficiency in a capital market. 展开更多
关键词 ADVERTISING Stock price synchronicity Spillover effect Product market Capital market Investor attention Information asymmetry
原文传递
Cascaded ELM-Based Joint Frame Synchronization and Channel Estimation over Rician Fading Channel with Hardware Imperfections
9
作者 Qing Chaojin Rao Chuangui +2 位作者 Yang Na Tang Shuhai Wang Jiafan 《China Communications》 SCIE CSCD 2024年第6期87-102,共16页
Due to the interdependency of frame synchronization(FS)and channel estimation(CE),joint FS and CE(JFSCE)schemes are proposed to enhance their functionalities and therefore boost the overall performance of wireless com... Due to the interdependency of frame synchronization(FS)and channel estimation(CE),joint FS and CE(JFSCE)schemes are proposed to enhance their functionalities and therefore boost the overall performance of wireless communication systems.Although traditional JFSCE schemes alleviate the influence between FS and CE,they show deficiencies in dealing with hardware imperfection(HI)and deterministic line-of-sight(LOS)path.To tackle this challenge,we proposed a cascaded ELM-based JFSCE to alleviate the influence of HI in the scenario of the Rician fading channel.Specifically,the conventional JFSCE method is first employed to extract the initial features,and thus forms the non-Neural Network(NN)solutions for FS and CE,respectively.Then,the ELMbased networks,named FS-NET and CE-NET,are cascaded to capture the NN solutions of FS and CE.Simulation and analysis results show that,compared with the conventional JFSCE methods,the proposed cascaded ELM-based JFSCE significantly reduces the error probability of FS and the normalized mean square error(NMSE)of CE,even against the impacts of parameter variations. 展开更多
关键词 channel estimation extreme learning machine frame synchronization hardware imperfection nonlinear distortion synchronization metric
下载PDF
Dynamics and synchronization of neural models with memristive membranes under energy coupling
10
作者 万婧玥 吴富强 +1 位作者 马军 汪文帅 《Chinese Physics B》 SCIE EI CAS CSCD 2024年第5期316-322,共7页
Dynamical modeling of neural systems plays an important role in explaining and predicting some features of biophysical mechanisms.The electrophysiological environment inside and outside of the nerve cell is different.... Dynamical modeling of neural systems plays an important role in explaining and predicting some features of biophysical mechanisms.The electrophysiological environment inside and outside of the nerve cell is different.Due to the continuous and periodical properties of electromagnetic fields in the cell during its operation,electronic components involving two capacitors and a memristor are effective in mimicking these physical features.In this paper,a neural circuit is reconstructed by two capacitors connected by a memristor with periodical mem-conductance.It is found that the memristive neural circuit can present abundant firing patterns without stimulus.The Hamilton energy function is deduced using the Helmholtz theorem.Further,a neuronal network consisting of memristive neurons is proposed by introducing energy coupling.The controllability and flexibility of parameters give the model the ability to describe the dynamics and synchronization behavior of the system. 展开更多
关键词 MEMRISTOR neuronal model ENERGY SYNCHRONIZATION
下载PDF
Effects of asymmetric coupling and boundary on the dynamic behaviors of a random nearest neighbor coupled system
11
作者 徐玲 姜磊 《Chinese Physics B》 SCIE EI CAS CSCD 2024年第6期309-322,共14页
This study investigates the dynamical behaviors of nearest neighbor asymmetric coupled systems in a confined space.First, the study derivative analytical stability and synchronization conditions for the asymmetrically... This study investigates the dynamical behaviors of nearest neighbor asymmetric coupled systems in a confined space.First, the study derivative analytical stability and synchronization conditions for the asymmetrically coupled system in an unconfined space, which are then validated through numerical simulations. Simulation results show that asymmetric coupling has a significant impact on synchronization conditions. Moreover, it is observed that irrespective of whether the system is confined, an increase in coupling asymmetry leads to a hastened synchronization pace. Additionally, the study examines the effects of boundaries on the system's collective behaviors via numerical experiments. The presence of boundaries ensures the system's stability and synchronization, and reducing these boundaries can expedite the synchronization process and amplify its effects. Finally, the study reveals that the system's output amplitude exhibits stochastic resonance as the confined boundary size increases. 展开更多
关键词 asymmetric coupled confined space SYNCHRONIZATION stochastic resonance stability
下载PDF
Dynamical behaviors in discrete memristor-coupled small-world neuronal networks
12
作者 鲁婕妤 谢小华 +3 位作者 卢亚平 吴亚联 李春来 马铭磷 《Chinese Physics B》 SCIE EI CAS CSCD 2024年第4期729-734,共6页
The brain is a complex network system in which a large number of neurons are widely connected to each other and transmit signals to each other.The memory characteristic of memristors makes them suitable for simulating... The brain is a complex network system in which a large number of neurons are widely connected to each other and transmit signals to each other.The memory characteristic of memristors makes them suitable for simulating neuronal synapses with plasticity.In this paper,a memristor is used to simulate a synapse,a discrete small-world neuronal network is constructed based on Rulkov neurons and its dynamical behavior is explored.We explore the influence of system parameters on the dynamical behaviors of the discrete small-world network,and the system shows a variety of firing patterns such as spiking firing and triangular burst firing when the neuronal parameterαis changed.The results of a numerical simulation based on Matlab show that the network topology can affect the synchronous firing behavior of the neuronal network,and the higher the reconnection probability and number of the nearest neurons,the more significant the synchronization state of the neurons.In addition,by increasing the coupling strength of memristor synapses,synchronization performance is promoted.The results of this paper can boost research into complex neuronal networks coupled with memristor synapses and further promote the development of neuroscience. 展开更多
关键词 small-world networks Rulkov neurons MEMRISTOR SYNCHRONIZATION
下载PDF
Chimera states of phase oscillator populations with nonlocal higher-order couplings
13
作者 伍勇刚 余华健 +1 位作者 郑志刚 徐灿 《Chinese Physics B》 SCIE EI CAS CSCD 2024年第4期402-407,共6页
The chimera states underlying many realistic dynamical processes have attracted ample attention in the area of dynamical systems.Here, we generalize the Kuramoto model with nonlocal coupling incorporating higher-order... The chimera states underlying many realistic dynamical processes have attracted ample attention in the area of dynamical systems.Here, we generalize the Kuramoto model with nonlocal coupling incorporating higher-order interactions encoded with simplicial complexes.Previous works have shown that higher-order interactions promote coherent states.However, we uncover the fact that the introduced higher-order couplings can significantly enhance the emergence of the incoherent state.Remarkably, we identify that the chimera states arise as a result of multi-attractors in dynamic states.Importantly, we review that the increasing higher-order interactions can significantly shape the emergent probability of chimera states.All the observed results can be well described in terms of the dimension reduction method.This study is a step forward in highlighting the importance of nonlocal higher-order couplings, which might provide control strategies for the occurrence of spatial-temporal patterns in networked systems. 展开更多
关键词 synchronization complex system coupled oscillators phase transition
下载PDF
Dynamics and synchronization in a memristor-coupled discrete heterogeneous neuron network considering noise
14
作者 晏询 李志军 李春来 《Chinese Physics B》 SCIE EI CAS CSCD 2024年第2期537-544,共8页
Research on discrete memristor-based neural networks has received much attention.However,current research mainly focuses on memristor–based discrete homogeneous neuron networks,while memristor-coupled discrete hetero... Research on discrete memristor-based neural networks has received much attention.However,current research mainly focuses on memristor–based discrete homogeneous neuron networks,while memristor-coupled discrete heterogeneous neuron networks are rarely reported.In this study,a new four-stable discrete locally active memristor is proposed and its nonvolatile and locally active properties are verified by its power-off plot and DC V–I diagram.Based on two-dimensional(2D)discrete Izhikevich neuron and 2D discrete Chialvo neuron,a heterogeneous discrete neuron network is constructed by using the proposed discrete memristor as a coupling synapse connecting the two heterogeneous neurons.Considering the coupling strength as the control parameter,chaotic firing,periodic firing,and hyperchaotic firing patterns are revealed.In particular,multiple coexisting firing patterns are observed,which are induced by different initial values of the memristor.Phase synchronization between the two heterogeneous neurons is discussed and it is found that they can achieve perfect synchronous at large coupling strength.Furthermore,the effect of Gaussian white noise on synchronization behaviors is also explored.We demonstrate that the presence of noise not only leads to the transition of firing patterns,but also achieves the phase synchronization between two heterogeneous neurons under low coupling strength. 展开更多
关键词 heterogeneous neuron network discrete memristor coexisting attractors SYNCHRONIZATION noise
下载PDF
Quantum synchronization with correlated baths
15
作者 李磊 王春辉 +2 位作者 尹洪浩 王如泉 刘伍明 《Chinese Physics B》 SCIE EI CAS CSCD 2024年第2期152-157,共6页
We study quantum synchronization under the nonequilibrium reservoirs.We consider a two-qubit XXZ chain coupled independently to their own reservoirs modeled by the collisional model.Two reservoir particles,initially p... We study quantum synchronization under the nonequilibrium reservoirs.We consider a two-qubit XXZ chain coupled independently to their own reservoirs modeled by the collisional model.Two reservoir particles,initially prepared in a thermal state or a state with coherence,are correlated through a unitary transformation and afterward interact locally with the two quantum subsystems.We study the quantum effect of reservoir on synchronous dynamics of system.By preparing different reservoir initial states or manipulating the reservoir particles coupling and the temperature gradient,we find that quantum entanglement of reservoir is the key to control quantum synchronization of system qubits. 展开更多
关键词 quantum synchronization ENTANGLEMENT quantum coherence nonequilibrium reservoir
下载PDF
Synchronization and firing mode transition of two neurons in a bilateral auditory system driven by a high–low frequency signal
16
作者 Charles Omotomide Apata 唐浥瑞 +2 位作者 周祎凡 蒋龙 裴启明 《Chinese Physics B》 SCIE EI CAS CSCD 2024年第5期722-735,共14页
The FitzHugh–Nagumo neuron circuit integrates a piezoelectric ceramic to form a piezoelectric sensing neuron,which can capture external sound signals and simulate the auditory neuron system.Two piezoelectric sensing ... The FitzHugh–Nagumo neuron circuit integrates a piezoelectric ceramic to form a piezoelectric sensing neuron,which can capture external sound signals and simulate the auditory neuron system.Two piezoelectric sensing neurons are coupled by a parallel circuit consisting of a Josephson junction and a linear resistor,and a binaural auditory system is established.Considering the non-singleness of external sound sources,the high–low frequency signal is used as the input signal to study the firing mode transition and synchronization of this system.It is found that the angular frequency of the high–low frequency signal is a key factor in determining whether the dynamic behaviors of two coupled neurons are synchronous.When they are in synchronization at a specific angular frequency,the changes in physical parameters of the input signal and the coupling strength between them will not destroy their synchronization.In addition,the firing mode of two coupled auditory neurons in synchronization is affected by the characteristic parameters of the high–low frequency signal rather than the coupling strength.The asynchronous dynamic behavior and variations in firing modes will harm the auditory system.These findings could help determine the causes of hearing loss and devise functional assistive devices for patients. 展开更多
关键词 piezoelectric ceramic Josephson junction auditory neuron SYNCHRONIZATION
下载PDF
Dynamical behavior of memristor-coupled heterogeneous discrete neural networks with synaptic crosstalk
17
作者 马铭磷 熊康灵 +1 位作者 李志军 贺少波 《Chinese Physics B》 SCIE EI CAS CSCD 2024年第2期545-550,共6页
Synaptic crosstalk is a prevalent phenomenon among neuronal synapses,playing a crucial role in the transmission of neural signals.Therefore,considering synaptic crosstalk behavior and investigating the dynamical behav... Synaptic crosstalk is a prevalent phenomenon among neuronal synapses,playing a crucial role in the transmission of neural signals.Therefore,considering synaptic crosstalk behavior and investigating the dynamical behavior of discrete neural networks are highly necessary.In this paper,we propose a heterogeneous discrete neural network(HDNN)consisting of a three-dimensional KTz discrete neuron and a Chialvo discrete neuron.These two neurons are coupled mutually by two discrete memristors and the synaptic crosstalk is considered.The impact of crosstalk strength on the firing behavior of the HDNN is explored through bifurcation diagrams and Lyapunov exponents.It is observed that the HDNN exhibits different coexisting attractors under varying crosstalk strengths.Furthermore,the influence of different crosstalk strengths on the synchronized firing of the HDNN is investigated,revealing a gradual attainment of phase synchronization between the two discrete neurons as the crosstalk strength decreases. 展开更多
关键词 discrete memristor synaptic crosstalk coexisting attractor phase synchronization
下载PDF
A step to the decentralized real-time timekeeping network
18
作者 王芳敏 陈雨锋 +4 位作者 周建华 蔺玉亭 杨军 王波 王力军 《Chinese Physics B》 SCIE EI CAS CSCD 2024年第1期183-191,共9页
The composite time scale(CTS) provides an accurate and stable time-frequency reference for modern science and technology. Conventional CTS always features a centralized network topology, which means that the CTS is ac... The composite time scale(CTS) provides an accurate and stable time-frequency reference for modern science and technology. Conventional CTS always features a centralized network topology, which means that the CTS is accompanied by a local master clock. This largely restricts the stability and reliability of the CTS. We simulate the restriction and analyze the influence of the master clock on the CTS. It proves that the CTS's long-term stability is also positively related to that of the master clock, until the region dominated by the frequency drift of the H-maser(averaging time longer than ~10~5s).Aiming at this restriction, a real-time clock network is utilized. Based on the network, a real-time CTS referenced by a stable remote master clock is achieved. The experiment comparing two real-time CTSs referenced by a local and a remote master clock respectively reveals that under open-loop steering, the stability of the CTS is improved by referencing to a remote and more stable master clock instead of a local and less stable master clock. In this way, with the help of the proposed scheme, the CTS can be referenced to the most stable master clock within the network in real time, no matter whether it is local or remote, making democratic polycentric timekeeping possible. 展开更多
关键词 frequency synchronization network composite time scale frequency stability democratic timekeeping
下载PDF
On the functions of astrocyte-mediated neuronal slow inward currents
19
作者 Balázs Pál 《Neural Regeneration Research》 SCIE CAS CSCD 2024年第12期2602-2612,共11页
Slow inward currents are known as neuronal excitatory currents mediated by glutamate release and activation of neuronal extra synaptic N-met hyl-D-aspartate receptors with the contribution of astrocytes.These events a... Slow inward currents are known as neuronal excitatory currents mediated by glutamate release and activation of neuronal extra synaptic N-met hyl-D-aspartate receptors with the contribution of astrocytes.These events are significantly slower than the excitatory postsynaptic currents.Parameters of slow inward currents are determined by seve ral factors including the mechanisms of astrocytic activation and glutamate release,as well as the diffusion pathways from the release site towards the extra synaptic recepto rs.Astrocytes are stimulated by neuronal network activity,which in turn excite neurons,forming an astrocyte-neuron feedback loop.Mostly as a consequence of brain edema,astrocytic swelling can also induce slow inward currents under pathological conditions.There is a growing body of evidence on the roles of slow inward currents on a single neuron or local network level.These events often occur in synchro ny on neurons located in the same astrocytic domain.Besides synchronization of neuronal excitability,slow inward currents also set synaptic strength via eliciting timing-dependent synaptic plasticity.In addition,slow inward currents are also subject to non-synaptic plasticity triggered by long-la sting stimulation of the excitatory inputs.Of note,there might be important regionspecific differences in the roles and actions triggering slow inward currents.In greater networks,the pathophysiological roles of slow inward currents can be better understood than physiological ones.Slow inward currents are identified in the pathophysiological background of autism,as slow inward currents drive early hypersynchrony of the neural networks.Slow inward currents are significant contributors to paroxysmal depolarizational shifts/interictal spikes.These events are related to epilepsy,but also found in Alzheimer's disease,Parkinson's disease,and stroke,leading to the decline of cognitive functions.Events with features overlapping with slow inward currents(excitatory,N-methyl-Daspartate-receptor mediated currents with astrocytic contribution) as ischemic currents and spreading depolarization also have a well-known pathophysiological role in worsening consequences of stroke,traumatic brain injury,or epilepsy.One might assume that slow inward currents occurring with low frequency under physiological conditions might contribute to synaptic plasticity and memory formation.However,to state this,more experimental evidence from greater neuronal networks or the level of the individual is needed.In this review,I aimed to summarize findings on slow inward currents and to speculate on the potential functions of it. 展开更多
关键词 ASTROCYTE cortical spreading depolarization gliotransmission GLUTAMATE neural synchronization NMDA receptor paroxysmal depolarizational shift slow inward current
下载PDF
Bunch-length measurement at a bunch-by-bunch rate based on time–frequency-domain joint analysis techniques and its application
20
作者 Hong-Shuang Wang Xing Yang +2 位作者 Yong-Bin Leng Yi-Mei Zhou Ji-Gang Wang 《Nuclear Science and Techniques》 SCIE EI CAS CSCD 2024年第4期165-175,共11页
This paper presents a new technique for measuring the bunch length of a high-energy electron beam at a bunch-by-bunch rate in storage rings.This technique uses the time–frequency-domain joint analysis of the bunch si... This paper presents a new technique for measuring the bunch length of a high-energy electron beam at a bunch-by-bunch rate in storage rings.This technique uses the time–frequency-domain joint analysis of the bunch signal to obtain bunch-by-bunch and turn-by-turn longitudinal parameters,such as bunch length and synchronous phase.The bunch signal is obtained using a button electrode with a bandwidth of several gigahertz.The data acquisition device was a high-speed digital oscilloscope with a sampling rate of more than 10 GS/s,and the single-shot sampling data buffer covered thousands of turns.The bunch-length and synchronous phase information were extracted via offline calculations using Python scripts.The calibration coefficient of the system was determined using a commercial streak camera.Moreover,this technique was tested on two different storage rings and successfully captured various longitudinal transient processes during the harmonic cavity debugging process at the Shanghai Synchrotron Radiation Facility(SSRF),and longitudinal instabilities were observed during the single-bunch accumulation process at Hefei Light Source(HLS).For Gaussian-distribution bunches,the uncertainty of the bunch phase obtained using this technique was better than 0.2 ps,and the bunch-length uncertainty was better than 1 ps.The dynamic range exceeded 10 ms.This technology is a powerful and versatile beam diagnostic tool that can be conveniently deployed in high-energy electron storage rings. 展开更多
关键词 Bunch-by-bunch diagnostic Bunch-length measurement Synchronous phase measurement Joint time–frequency-domain analysis Longitudinal instability
下载PDF
上一页 1 2 87 下一页 到第
使用帮助 返回顶部