Based on fractional-order Lyapunov stability theory, this paper provides a novel method to achieve robust modified projective synchronization of two uncertain fractional-order chaotic systems with external disturbance...Based on fractional-order Lyapunov stability theory, this paper provides a novel method to achieve robust modified projective synchronization of two uncertain fractional-order chaotic systems with external disturbance. Simulation of the fractional-order Lorenz chaotic system and fractional-order Chen's chaotic system with both parameters uncertainty and external disturbance show the applicability and the efficiency of the proposed scheme.展开更多
In this paper, the modified projective synchronization (MPS) of a fractional-order hyperchaotic system is inves- tigated. We design the response system corresponding to the drive system on the basis of projective sy...In this paper, the modified projective synchronization (MPS) of a fractional-order hyperchaotic system is inves- tigated. We design the response system corresponding to the drive system on the basis of projective synchronization theory, and determine the sufficient condition for the synchronization of the drive system and the response system based on fractional-order stability theory. The MPS of a fractional-order hyperchaotic system is achieved by transmitting a single variable. This scheme reduces the information transmission in order to achieve the synchronization, and extends the applicable scope of MPS. Numerical simulations further demonstrate the feasibility and the effectiveness of the proposed scheme.展开更多
In this paper, a nonlinear control scheme of two identical hyperchaotic Chert systems is developed to realize their modified projective synchronization. We achieve modified projective synchronization between the two i...In this paper, a nonlinear control scheme of two identical hyperchaotic Chert systems is developed to realize their modified projective synchronization. We achieve modified projective synchronization between the two identical hyperchaotic systems by directing the scaling factor onto the desired value. With symbolic computation system Maple and Lyapunov stability theory, numerical simulations are given to perform the process of the synchronization.展开更多
This work presents two different methods-nonlinear control method and adaptive control approach to achieve the modified projective synchronization of a new hyperchaotic system with known or unknown parameters.Based on...This work presents two different methods-nonlinear control method and adaptive control approach to achieve the modified projective synchronization of a new hyperchaotic system with known or unknown parameters.Based on Lyapunov stability theory,nonlinear control method is adopted when the parameters of driving and response systems are known beforehand;when the parameters are fully unknown,adaptive controllers and parameters update laws are proposed to synchronize two different hyperchaotic system and identify the unknown parameters.Moreover,the rate of synchronization can be regulated by adjusting the control gains designed in the controllers.The corresponding simulations are exploited to demonstrate the effectiveness of the proposed two methods.展开更多
This paper investigates the modified function projective synchronization,which means that the drive system and the response system are synchronized up to a desired scale matrix of function. By the active control schem...This paper investigates the modified function projective synchronization,which means that the drive system and the response system are synchronized up to a desired scale matrix of function. By the active control scheme,a general method for modified function projective synchronization is proposed. Numerical simulations on chaotic Rssler system and hyper-chaotic Chen system are presented to verify the effectiveness of the proposed scheme.展开更多
In this paper, the modified cascade synchronization scheme is proposed to investigate the synchronization in discrete-time hyperchaotic systems. By choosing a general kind of proportional scaling error functions and b...In this paper, the modified cascade synchronization scheme is proposed to investigate the synchronization in discrete-time hyperchaotic systems. By choosing a general kind of proportional scaling error functions and based on rigorous control theory, we take the discrete-time hyperchaotic system due to Wang and 3D generalized Henon map as two examples to achieve the modified cascade synchronization, respectively. Numerical simulations are used to verify the effectiveness of the proposed technique.展开更多
To increase the variety and security of communication, we present the definitions of modified projective synchronization with complex scaling factors (CMPS) of real chaotic systems and complex chaotic systems, where...To increase the variety and security of communication, we present the definitions of modified projective synchronization with complex scaling factors (CMPS) of real chaotic systems and complex chaotic systems, where complex scaling factors establish a link between real chaos and complex chaos. Considering all situations of unknown parameters and pseudo-gradient condition, we design adaptive CMPS schemes based on the speed-gradient method for the real drive chaotic system and complex response chaotic system and for the complex drive chaotic system and the real response chaotic system, respectively. The convergence factors and dynamical control strength are added to regulate the convergence speed and increase robustness. Numerical simulations verify the feasibility and effectiveness of the presented schemes.展开更多
This paper proposes the chaos control and the modified projective synchronization methods for chaotic dissipative gyroscope systems. Because of the nonlinear terms of the gyroscope system, the system exhibits chaotic ...This paper proposes the chaos control and the modified projective synchronization methods for chaotic dissipative gyroscope systems. Because of the nonlinear terms of the gyroscope system, the system exhibits chaotic motions. Occasionally, the extreme sensitivity to initial states in a system operating in chaotic mode can be very destructive to the system because of unpredictable behavior. In order to improve the performance of a dynamic system or avoid the chaotic phenomena, it is necessary to control a chaotic system with a periodic motion beneficial for working with a particular condition. As chaotic signals are usually broadband and noise like, synchronized chaotic systems can be used as cipher generators for secure communication. This paper presents chaos synchronization of two identical chaotic motions of symmetric gyroscopes. Using the variable structure control technique, control laws are established which guarantees the chaos control and the modified projective synchronization. By Lyapunov stability theory, control lows are proposed to ensure the stability of the controlled and synchronized system. Numerical simulations are presented to verify the proposed control and the synchronization approach. This paper demonstrates that synchronization and anti-synchronization can coexist in dissipative gyroscope systems via variable structure control.展开更多
Synchronization of fractional-order chaotic systems is receiving significant attention in the literature due to its applications in a variety of fields,including cryptography,optics,and secure communications.In this p...Synchronization of fractional-order chaotic systems is receiving significant attention in the literature due to its applications in a variety of fields,including cryptography,optics,and secure communications.In this paper,a three-dimensional fractional-order chaotic Lorenz model of chemical reactions is discussed.Some basic dynamical properties,such as stability of equilibria,Lyapunov exponents,bifurcation diagrams,Poincarémap,and sensitivity to initial conditions,are studied.By adopting the Adomian decomposition algorithm(ADM),the numerical solution of the fractional-order system is obtained.It is found that the lowest derivative order in which the proposed system exhibits chaos is q=0.694 by applying ADM.The result has been validated by the existence of one positive Lyapunov exponent and by employing some phase diagrams.In addition,the richer dynamics of the system are confirmed by using powerful tools in nonlinear dynamic analysis,such as the 0-1 test and C_(0)complexity.Moreover,modified projective synchronization has been implemented based on the stability theory of fractional-order systems.This paper presents the application of the modified projective synchronization in secure communication,where the information signal can be transmitted and recovered successfully through the channel.MATLAB simulations are provided to show the validity of the constructed secure communication scheme.展开更多
The aim of this paper is to study complex modified projective synchronization(CMPS) between fractional-order chaotic nonlinear systems with incommensurate orders. Based on the stability theory of incommensurate frac...The aim of this paper is to study complex modified projective synchronization(CMPS) between fractional-order chaotic nonlinear systems with incommensurate orders. Based on the stability theory of incommensurate fractional-order systems and active control method, control laws are derived to achieve CMPS in three situations including fractional-order complex Lorenz system driving fractional-order complex Chen system, fractional-order real Rssler system driving fractional-order complex Chen system, and fractionalorder complex Lorenz system driving fractional-order real Lü system. Numerical simulations confirm the validity and feasibility of the analytical method.展开更多
基金Project supported by the National Natural Science Foundation of China(Grant No.61203041)the Fundamental Research Funds for the Central Universities of China(Grant No.11MG49)
文摘Based on fractional-order Lyapunov stability theory, this paper provides a novel method to achieve robust modified projective synchronization of two uncertain fractional-order chaotic systems with external disturbance. Simulation of the fractional-order Lorenz chaotic system and fractional-order Chen's chaotic system with both parameters uncertainty and external disturbance show the applicability and the efficiency of the proposed scheme.
基金supported by the National Natural Science Foundation of China (Grant Nos. 60573172 and 60973152)the Superior University Doctor Subject Special Scientific Research Foundation of China (Grant No. 20070141014)the Natural Science Foundation of Liaoning Province, China (Grant No. 20082165)
文摘In this paper, the modified projective synchronization (MPS) of a fractional-order hyperchaotic system is inves- tigated. We design the response system corresponding to the drive system on the basis of projective synchronization theory, and determine the sufficient condition for the synchronization of the drive system and the response system based on fractional-order stability theory. The MPS of a fractional-order hyperchaotic system is achieved by transmitting a single variable. This scheme reduces the information transmission in order to achieve the synchronization, and extends the applicable scope of MPS. Numerical simulations further demonstrate the feasibility and the effectiveness of the proposed scheme.
文摘In this paper, a nonlinear control scheme of two identical hyperchaotic Chert systems is developed to realize their modified projective synchronization. We achieve modified projective synchronization between the two identical hyperchaotic systems by directing the scaling factor onto the desired value. With symbolic computation system Maple and Lyapunov stability theory, numerical simulations are given to perform the process of the synchronization.
基金National Natural Science Foundation of China(No.60874113)
文摘This work presents two different methods-nonlinear control method and adaptive control approach to achieve the modified projective synchronization of a new hyperchaotic system with known or unknown parameters.Based on Lyapunov stability theory,nonlinear control method is adopted when the parameters of driving and response systems are known beforehand;when the parameters are fully unknown,adaptive controllers and parameters update laws are proposed to synchronize two different hyperchaotic system and identify the unknown parameters.Moreover,the rate of synchronization can be regulated by adjusting the control gains designed in the controllers.The corresponding simulations are exploited to demonstrate the effectiveness of the proposed two methods.
基金Sponsored by the Scientific Research Fund of Heilongjiang Provincial Education Department of China(Grant No. 11551088)Youth Foundation ofHarbin University of Science and Technology(Grant No. 2009YF018)
文摘This paper investigates the modified function projective synchronization,which means that the drive system and the response system are synchronized up to a desired scale matrix of function. By the active control scheme,a general method for modified function projective synchronization is proposed. Numerical simulations on chaotic Rssler system and hyper-chaotic Chen system are presented to verify the effectiveness of the proposed scheme.
基金National Natural Science Foundation of China under Grant No.10735030
文摘In this paper, the modified cascade synchronization scheme is proposed to investigate the synchronization in discrete-time hyperchaotic systems. By choosing a general kind of proportional scaling error functions and based on rigorous control theory, we take the discrete-time hyperchaotic system due to Wang and 3D generalized Henon map as two examples to achieve the modified cascade synchronization, respectively. Numerical simulations are used to verify the effectiveness of the proposed technique.
基金Project supported by the National Natural Science Foundation of China(Grant Nos.61273088,10971120,and 61001099)the Natural Science Foundation of Shandong Province,China(Grant No.ZR2010FM010)
文摘To increase the variety and security of communication, we present the definitions of modified projective synchronization with complex scaling factors (CMPS) of real chaotic systems and complex chaotic systems, where complex scaling factors establish a link between real chaos and complex chaos. Considering all situations of unknown parameters and pseudo-gradient condition, we design adaptive CMPS schemes based on the speed-gradient method for the real drive chaotic system and complex response chaotic system and for the complex drive chaotic system and the real response chaotic system, respectively. The convergence factors and dynamical control strength are added to regulate the convergence speed and increase robustness. Numerical simulations verify the feasibility and effectiveness of the presented schemes.
文摘This paper proposes the chaos control and the modified projective synchronization methods for chaotic dissipative gyroscope systems. Because of the nonlinear terms of the gyroscope system, the system exhibits chaotic motions. Occasionally, the extreme sensitivity to initial states in a system operating in chaotic mode can be very destructive to the system because of unpredictable behavior. In order to improve the performance of a dynamic system or avoid the chaotic phenomena, it is necessary to control a chaotic system with a periodic motion beneficial for working with a particular condition. As chaotic signals are usually broadband and noise like, synchronized chaotic systems can be used as cipher generators for secure communication. This paper presents chaos synchronization of two identical chaotic motions of symmetric gyroscopes. Using the variable structure control technique, control laws are established which guarantees the chaos control and the modified projective synchronization. By Lyapunov stability theory, control lows are proposed to ensure the stability of the controlled and synchronized system. Numerical simulations are presented to verify the proposed control and the synchronization approach. This paper demonstrates that synchronization and anti-synchronization can coexist in dissipative gyroscope systems via variable structure control.
文摘Synchronization of fractional-order chaotic systems is receiving significant attention in the literature due to its applications in a variety of fields,including cryptography,optics,and secure communications.In this paper,a three-dimensional fractional-order chaotic Lorenz model of chemical reactions is discussed.Some basic dynamical properties,such as stability of equilibria,Lyapunov exponents,bifurcation diagrams,Poincarémap,and sensitivity to initial conditions,are studied.By adopting the Adomian decomposition algorithm(ADM),the numerical solution of the fractional-order system is obtained.It is found that the lowest derivative order in which the proposed system exhibits chaos is q=0.694 by applying ADM.The result has been validated by the existence of one positive Lyapunov exponent and by employing some phase diagrams.In addition,the richer dynamics of the system are confirmed by using powerful tools in nonlinear dynamic analysis,such as the 0-1 test and C_(0)complexity.Moreover,modified projective synchronization has been implemented based on the stability theory of fractional-order systems.This paper presents the application of the modified projective synchronization in secure communication,where the information signal can be transmitted and recovered successfully through the channel.MATLAB simulations are provided to show the validity of the constructed secure communication scheme.
基金supported by Key Program of National Natural Science Foundation of China (No. 61533011)National Natural Science Foundation of China (Nos. 61273088 and 61603203)
文摘The aim of this paper is to study complex modified projective synchronization(CMPS) between fractional-order chaotic nonlinear systems with incommensurate orders. Based on the stability theory of incommensurate fractional-order systems and active control method, control laws are derived to achieve CMPS in three situations including fractional-order complex Lorenz system driving fractional-order complex Chen system, fractional-order real Rssler system driving fractional-order complex Chen system, and fractionalorder complex Lorenz system driving fractional-order real Lü system. Numerical simulations confirm the validity and feasibility of the analytical method.