Due to frequency-selective and time-variant property of wireless channel together with additive noise and mismatch of oscillators between transmitter and receiver, there are always time and frequency synchronization e...Due to frequency-selective and time-variant property of wireless channel together with additive noise and mismatch of oscillators between transmitter and receiver, there are always time and frequency synchronization errors in a practical OFDM system. To investigate the effect of the two kinds of errors on system performance, the average normalized interference power (NIP) is defined. A simple supper bound for NIP caused by time synchronization error (TSE) and the tighter upper bound for NIP resulting from frequency synchronization error (FSE) are derived independently. Simulations in typical short wave (SW) and medium wave (MW) channels further verify the correctness and tightness of these upper bounds. They actually provide good approximations to NIPs. Moreover, the upper bound for NIP resulting from FSE is tighter than traditional upper bound. Additionally, a new solution is proposed to relax the precision requirement for time synchronization algorithm, which can achieve a better tradeoff between time synchronization precision and bandwidth efficiency. These upper bounds will be useful in developing and choosing time and frequency synchronization algorithms in OFDM system to achieve a specific NIP value for a given channel condition.展开更多
基金supported by the National Natural Science Foundation of China(Grant No.60496311).
文摘Due to frequency-selective and time-variant property of wireless channel together with additive noise and mismatch of oscillators between transmitter and receiver, there are always time and frequency synchronization errors in a practical OFDM system. To investigate the effect of the two kinds of errors on system performance, the average normalized interference power (NIP) is defined. A simple supper bound for NIP caused by time synchronization error (TSE) and the tighter upper bound for NIP resulting from frequency synchronization error (FSE) are derived independently. Simulations in typical short wave (SW) and medium wave (MW) channels further verify the correctness and tightness of these upper bounds. They actually provide good approximations to NIPs. Moreover, the upper bound for NIP resulting from FSE is tighter than traditional upper bound. Additionally, a new solution is proposed to relax the precision requirement for time synchronization algorithm, which can achieve a better tradeoff between time synchronization precision and bandwidth efficiency. These upper bounds will be useful in developing and choosing time and frequency synchronization algorithms in OFDM system to achieve a specific NIP value for a given channel condition.