期刊文献+
共找到4篇文章
< 1 >
每页显示 20 50 100
Harmonics in the Squirrel Cage Induction Motor Analytic Calculation Part III: Influence on the Torque-speed Characteristic 被引量:1
1
作者 G.Kovács 《CES Transactions on Electrical Machines and Systems》 EI CSCD 2024年第1期86-102,共17页
The harmonics that appear in the squirrel cage asynchronous machine have been discussed in great detail in the literature for a long time. However, the systematization of the phenomenon is still pending, so we made an... The harmonics that appear in the squirrel cage asynchronous machine have been discussed in great detail in the literature for a long time. However, the systematization of the phenomenon is still pending, so we made an attempt to fill this gap in the previous parts of our study by elaborating formulas for calculation of parasitic torques. It was a general demand among those who work in this field towards the author to verify his formulas with measurements. In the literature, it seems,only one detailed, purposeful series of measurements has been published so far, the purpose of which was to investigate the effect of the number of rotor slots on the torque-speed characteristic curve of the machine. The main goal of this study is to verify the correctness of the formulas by comparing them with the referred series of measurements. Relying on this, the expected synchronous parasitic torques were developed for the frequently used rotor slot numbers-as a design guide for the engineer.Thus, together with our complete table for radial magnetic pull published in our previous work, the designer has all the principles, data and formulas available for the right number of rotor slots for his given machine and for the drive system. This brings this series of papers to an end. 展开更多
关键词 Asynchronous parasitic torques Induction motor Squirrel cage rotor Space harmonics Synchronous parasitic torques
下载PDF
Harmonics in the Squirrel Cage Induction Motor,Analytic Calculation Part Ⅱ:Synchronous Parasitic Torques,Radial Magnetic Forces 被引量:1
2
作者 G.Kovács 《CES Transactions on Electrical Machines and Systems》 CSCD 2023年第4期404-421,共18页
The magnetic field generated in the air gap of the cage asynchronous machine and the harmonics of the magnetomotive forces creating that magnetic field,as well as the synchronous parasitic torques,radial magnetic forc... The magnetic field generated in the air gap of the cage asynchronous machine and the harmonics of the magnetomotive forces creating that magnetic field,as well as the synchronous parasitic torques,radial magnetic forces have been discussed in great detail in the literature,but always separately,for a long time.However,systematization of the phenomenon still awaits.Therefore,it is worth summarizing the completeness of the phenomena in a single study–with a new approach at the same time-in order to reveal the relationships between them.The role of rotor slot number is emphasized much more than before.New formulas derived for both synchronous torques and radial magnetic forces are used for further investigation.It will be shown that both phenomena in subject must be treated together.Formulas will be provided to take into account attenuation.Design guide will be provided to avoid dangerous rotor slot numbers.It will be shown that the generation of synchronous torques and radial magnetic forces do not depend–in this new approach-on the slot combination,but on the rotor slot number itself. 展开更多
关键词 Squirrel cage induction motor Synchronous parasitic torques Radial magnetic forces Winding harmonics
下载PDF
Dynamic torque response analysis of IPMSM in flux weakening region for HEV applications
3
作者 刘晓红 张幽彤 黄文卿 《Journal of Beijing Institute of Technology》 EI CAS 2015年第3期355-360,共6页
An over-modulation based vector control strategy for interior permanent magnet synchronous machine( IPMSM) is proposed and investigated. The strategy increases the reference flux weakening voltage to improve efficie... An over-modulation based vector control strategy for interior permanent magnet synchronous machine( IPMSM) is proposed and investigated. The strategy increases the reference flux weakening voltage to improve efficiency in flux weakening region of IPMSMwith the same dynamic torque response performance in standard SV Mtechnique. The relationship between dynamic torque performance and the reference flux weakening voltage is also discussed. In order to achieve fast and smooth shift process,the torque response must be less than 20 ms in the parallel hybrid electric vehicle( HEV),according to this,modeling and experimental studies were carried out. The results show that the proposed strategy can achieve the same dynamic and steady state torque performance with higher reference flux weakening voltage,which means higher efficiency. 展开更多
关键词 interior permanent magnet synchronous machine(IPMSM) over-modulation flux weakening dynamic torque response hybrid electric vehicle(HEV)
下载PDF
Design of Power System Stabilizer for DFIG-based Wind Energy Integrated Power Systems Under Combined Influence of PLL and Virtual Inertia Controller
4
作者 Balakrushna Sahu Bibhu Prasad Padhy 《Journal of Modern Power Systems and Clean Energy》 SCIE EI CSCD 2024年第2期524-534,共11页
Wind energy systems (WESs) based on doubly-fed induction generators (DFIGs) have enormous potential for meeting the future demands related to clean energy. Due to the low inertia and intermittency of power injection, ... Wind energy systems (WESs) based on doubly-fed induction generators (DFIGs) have enormous potential for meeting the future demands related to clean energy. Due to the low inertia and intermittency of power injection, a WES is equipped with a virtual inertial controller (VIC) to support the system during a frequency deviation event. The frequency deviation measured by a phase locked loop (PLL) installed on a point of common coupling (PCC) bus is the input signal to the VIC. However, a VIC with an improper inertial gain could deteriorate the damping of the power system, which may lead to instability. To address this issue, a mathematical formulation for calculating the synchronizing and damping torque coefficients of a WES-integrated single-machine infinite bus (SMIB) system while considering PLL and VIC dynamics is proposed in this paper. In addition, a power system stabilizer (PSS) is designed for wind energy integrated power systems to enhance electromechanical oscillation damping. A small-signal stability assessment is performed using the infinite bus connected to a synchronous generator of higher-order dynamics integrated with a VIC-equipped WES. Finally, the performance and robustness of the proposed PSS is demonstrated through time-domain simulation in SMIB and nine-bus test systems integrated with WES under several case studies. 展开更多
关键词 Doubly-fed induction generator(DFIG) virtual inertia controller(VIC) phase locked loop(PLL) small-signal analysis synchronizing/damping torque synchronous generator power system stabilizer(PSS)
原文传递
上一页 1 下一页 到第
使用帮助 返回顶部