Periodic components are of great significance for fault diagnosis and health monitoring of rotating machinery.Time synchronous averaging is an effective and convenient technique for extracting those components.However...Periodic components are of great significance for fault diagnosis and health monitoring of rotating machinery.Time synchronous averaging is an effective and convenient technique for extracting those components.However,the performance of time synchronous averaging is seriously limited when the separate segments are poorly synchronized.This paper proposes a new averaging method capable of extracting periodic components without external reference and an accurate period to solve this problem.With this approach,phase detection and compensation eliminate all segments'phase differences,which enables the segments to be well synchronized.The effectiveness of the proposed method is validated by numerical and experimental signals.展开更多
This paper investigates the correlation between stochastic resonance (SR) and the average phase-synchronization time which is between the input signal and the output signal in a bistable system driven by colour-corr...This paper investigates the correlation between stochastic resonance (SR) and the average phase-synchronization time which is between the input signal and the output signal in a bistable system driven by colour-correlated noises. The results show that the output signal-to-noise ratio can reach a maximum with the increase of the average phase- synchronization time, which may be helpful for understanding the principle of SR from the point of synchronization; however, SR and the maximum of the average phase-synchronization time appear at different optimal noise level, moreover, the effects on them of additive and multiplicative noise are different.展开更多
Planetary gear train is a critical transmission component in large equipment such as helicopters and wind turbines. Conducting damage perception of planetary gear trains is of great significance for the safe operation...Planetary gear train is a critical transmission component in large equipment such as helicopters and wind turbines. Conducting damage perception of planetary gear trains is of great significance for the safe operation of equipment. Existing methods for damage perception of planetary gear trains mainly rely on linear vibration analysis. However, these methods based on linear vibration signal analysis face challenges such as rich vibration sources, complex signal coupling and modulation mechanisms, significant influence of transmission paths, and difficulties in separating damage information. This paper proposes a method for separating instantaneous angular speed (IAS) signals for planetary gear fault diagnosis. Firstly, this method obtains encoder pulse signals through a built-in encoder. Based on this, it calculates the IAS signals using the Hilbert transform, and obtains the time-domain synchronous average signal of the IAS of the planetary gear through time-domain synchronous averaging technology, thus realizing the fault diagnosis of the planetary gear train. Experimental results validate the effectiveness of the calculated IAS signals, demonstrating that the time-domain synchronous averaging technology can highlight impact characteristics, effectively separate and extract fault impacts, greatly reduce the testing cost of experiments, and provide an effective tool for the fault diagnosis of planetary gear trains.展开更多
As far as the vibration signal processing is concerned, composition ofvibration signal resulting from incipient localized faults in gearbox is too weak to be detected bytraditional detecting technology available now. ...As far as the vibration signal processing is concerned, composition ofvibration signal resulting from incipient localized faults in gearbox is too weak to be detected bytraditional detecting technology available now. The method, which includes two steps: vibrationsignal from gearbox is first processed by synchronous average sampling technique and then it isanalyzed by complex continuous wavelet transform to diagnose gear fault, is introduced. Twodifferent kinds of faults in the gearbox, i.e. shaft eccentricity and initial crack in tooth fillet,are detected and distinguished from each other successfully.展开更多
Utilizing shaft-speed information to analyse vibration signals is an important method for fault diagnosis and condition monitoring of rotating machineries,especially for those running at variable speeds.However,in man...Utilizing shaft-speed information to analyse vibration signals is an important method for fault diagnosis and condition monitoring of rotating machineries,especially for those running at variable speeds.However,in many cases,shaft-speed information is not always available,for a variety of reasons.Fortunately,in most of the measurements,the shaft-speed information is embedded in the vibration response in many different forms,such as in the format of the fundamental shaft-rotation-frequency response and its harmonics,and the gear-meshing-frequency response and its harmonics,etc.Proper signal processing can be used to extract the shaft instantaneous speed from the measured vibration responses.In existing instantaneous shaft-speed-identification methods,a narrow-bandpass filtering technique is used explicitly or implicitly.In a complex gearbox system,such as that used in a wind turbine,the gear-meshing-response component could be modulated by many other shaft speeds,due to the configuration of the gearbox or due to the existence of component damage.As a result,it is very difficult to isolate a single vibration-response component for instantaneous shaft-speed detection.In this paper,an innovative approach is presented.The instantaneous shaft speed is extracted based on maxima tracking from the vibration-response spectrogram.A numerical integration scheme is employed to obtain the shaft instantaneous phase.Digital-domain synchronous resampling is then applied to the vibration data by using the instantaneous phase information.Due to the nature of noise suppression in the numerical integration,the accuracy of synchronous sampling is greatly improved.This proposed approach demonstrates the feasibility and engineering applicability through a controlled laboratory test case and two field wind-turbine cases.More detailed results and conclusions of this research are presented at the end of this paper.展开更多
This paper considers the pose synchronization problem of a group of moving rigid bodies under switching topologies where the dwell time of each topology may has no nonzero lower bound. The authors introduce an average...This paper considers the pose synchronization problem of a group of moving rigid bodies under switching topologies where the dwell time of each topology may has no nonzero lower bound. The authors introduce an average dwell time condition to characterize the length of time intervals in which the graphs are connected. By designing distributed control laws of angular velocity and linear velocity,the closed-loop dynamics of multiple rigid bodies with switching topologies can be converted into a hybrid dynamical system. The authors employ the Lyapunov stability theorem, and show that the pose synchronization can be reached under the average dwell time condition. Moreover, the authors investigate the pose synchronization problem of the leader-following model under a similar average dwell time condition. Simulation examples are given to illustrate the results.展开更多
基金Supported by National Postdoctoral Program for Innovative Talent of China (Grant No.BX20180031)。
文摘Periodic components are of great significance for fault diagnosis and health monitoring of rotating machinery.Time synchronous averaging is an effective and convenient technique for extracting those components.However,the performance of time synchronous averaging is seriously limited when the separate segments are poorly synchronized.This paper proposes a new averaging method capable of extracting periodic components without external reference and an accurate period to solve this problem.With this approach,phase detection and compensation eliminate all segments'phase differences,which enables the segments to be well synchronized.The effectiveness of the proposed method is validated by numerical and experimental signals.
文摘This paper investigates the correlation between stochastic resonance (SR) and the average phase-synchronization time which is between the input signal and the output signal in a bistable system driven by colour-correlated noises. The results show that the output signal-to-noise ratio can reach a maximum with the increase of the average phase- synchronization time, which may be helpful for understanding the principle of SR from the point of synchronization; however, SR and the maximum of the average phase-synchronization time appear at different optimal noise level, moreover, the effects on them of additive and multiplicative noise are different.
文摘Planetary gear train is a critical transmission component in large equipment such as helicopters and wind turbines. Conducting damage perception of planetary gear trains is of great significance for the safe operation of equipment. Existing methods for damage perception of planetary gear trains mainly rely on linear vibration analysis. However, these methods based on linear vibration signal analysis face challenges such as rich vibration sources, complex signal coupling and modulation mechanisms, significant influence of transmission paths, and difficulties in separating damage information. This paper proposes a method for separating instantaneous angular speed (IAS) signals for planetary gear fault diagnosis. Firstly, this method obtains encoder pulse signals through a built-in encoder. Based on this, it calculates the IAS signals using the Hilbert transform, and obtains the time-domain synchronous average signal of the IAS of the planetary gear through time-domain synchronous averaging technology, thus realizing the fault diagnosis of the planetary gear train. Experimental results validate the effectiveness of the calculated IAS signals, demonstrating that the time-domain synchronous averaging technology can highlight impact characteristics, effectively separate and extract fault impacts, greatly reduce the testing cost of experiments, and provide an effective tool for the fault diagnosis of planetary gear trains.
基金Provicial Natural Science Foundation of Shanxi,China(No.991051)Provincial Foundation for Homecoming Personnel from Study Abroad of Shanxi,China(No.194-101005)
文摘As far as the vibration signal processing is concerned, composition ofvibration signal resulting from incipient localized faults in gearbox is too weak to be detected bytraditional detecting technology available now. The method, which includes two steps: vibrationsignal from gearbox is first processed by synchronous average sampling technique and then it isanalyzed by complex continuous wavelet transform to diagnose gear fault, is introduced. Twodifferent kinds of faults in the gearbox, i.e. shaft eccentricity and initial crack in tooth fillet,are detected and distinguished from each other successfully.
文摘Utilizing shaft-speed information to analyse vibration signals is an important method for fault diagnosis and condition monitoring of rotating machineries,especially for those running at variable speeds.However,in many cases,shaft-speed information is not always available,for a variety of reasons.Fortunately,in most of the measurements,the shaft-speed information is embedded in the vibration response in many different forms,such as in the format of the fundamental shaft-rotation-frequency response and its harmonics,and the gear-meshing-frequency response and its harmonics,etc.Proper signal processing can be used to extract the shaft instantaneous speed from the measured vibration responses.In existing instantaneous shaft-speed-identification methods,a narrow-bandpass filtering technique is used explicitly or implicitly.In a complex gearbox system,such as that used in a wind turbine,the gear-meshing-response component could be modulated by many other shaft speeds,due to the configuration of the gearbox or due to the existence of component damage.As a result,it is very difficult to isolate a single vibration-response component for instantaneous shaft-speed detection.In this paper,an innovative approach is presented.The instantaneous shaft speed is extracted based on maxima tracking from the vibration-response spectrogram.A numerical integration scheme is employed to obtain the shaft instantaneous phase.Digital-domain synchronous resampling is then applied to the vibration data by using the instantaneous phase information.Due to the nature of noise suppression in the numerical integration,the accuracy of synchronous sampling is greatly improved.This proposed approach demonstrates the feasibility and engineering applicability through a controlled laboratory test case and two field wind-turbine cases.More detailed results and conclusions of this research are presented at the end of this paper.
基金supported by the National Natural Science Foundation of China under Grant Nos.61473189 and 61621003the National Key Basic Research Program of China(973 program)under Grant No.2014CB845302
文摘This paper considers the pose synchronization problem of a group of moving rigid bodies under switching topologies where the dwell time of each topology may has no nonzero lower bound. The authors introduce an average dwell time condition to characterize the length of time intervals in which the graphs are connected. By designing distributed control laws of angular velocity and linear velocity,the closed-loop dynamics of multiple rigid bodies with switching topologies can be converted into a hybrid dynamical system. The authors employ the Lyapunov stability theorem, and show that the pose synchronization can be reached under the average dwell time condition. Moreover, the authors investigate the pose synchronization problem of the leader-following model under a similar average dwell time condition. Simulation examples are given to illustrate the results.