By means of finite element analysis methods calculated the stress, strainand displacement of the belt teeth and analysisied the factors such as load distribution,specific property coefficient of material and tempe...By means of finite element analysis methods calculated the stress, strainand displacement of the belt teeth and analysisied the factors such as load distribution,specific property coefficient of material and temperature variation, which influence the fatigue strength of the belt teeth..展开更多
The noncircular synchronous belt drive mechanism has demonstrated certain achievements and has been used in special fields.Research regarding noncircular synchronous belt drive mechanisms has focused on optimization d...The noncircular synchronous belt drive mechanism has demonstrated certain achievements and has been used in special fields.Research regarding noncircular synchronous belt drive mechanisms has focused on optimization design and kinematic analysis in China,whereas two pulley noncircular synchronous belt transmissions have been developed overseas.However,owing to the noncircular characteristics of the belt pulley,the real-time variation in the belt length slack during the transmission of the noncircular synchronous belt is significant,resulting in high probabilities of skipping and vibration.In this study,a noncircular tensioning pulley is added to create a stable three-pulley noncircular synchronous belt driving mechanism and a good synchronous belt tensioning,with no skipping;hence,the non-uniform output characteristic of the driven pulley is consistent with the theoretical value.In the circular noncircular noncircular three-pulley noncircular synchronous belt mechanism,the pitch curve of the driving synchronous belt pulley is circular,whereas those of the driven synchronous belt and tensioning pulleys are noncircular.To minimize the slack of the belt length of the synchronous belt and the constraint of the concavity and circumference of the tensioning pulley,an automatic optimization model of the tensioning pulley pitch curve is established.The motion simulation,analysis,and optimization code for a three-belt-pulley noncircular synchronous belt drive mechanism is written,and the variation in belt length slack under different speed ratios is analyzed based on several examples.The testbed for a circular-noncircular-noncircular three-pulley noncircular synchronous belt transmission mechanism is developed.The test shows that the three-pulley noncircular synchronous belt drives well.This study proposes an automatic optimization algorithm for the tensioning pulley pitch curve of a noncircular synchronous belt transmission mechanism;it yields a stable transmission of the noncircular synchronous belt transmission mechanism as well as non-uniform output characteristics.展开更多
A new lightweight high-speed stacker is designed and developed.Its technical parameters are leading the industry level,which can meet the current requirements for high efficiency of intelligent logistics system.Starti...A new lightweight high-speed stacker is designed and developed.Its technical parameters are leading the industry level,which can meet the current requirements for high efficiency of intelligent logistics system.Starting from the key structure of stacker,through the theoretical analysis of the new mechanism and the comparison of the new and old equipment,the advantages of the new mechanism in improving the efficiency and lightweight design of stacker are explained.Through ANSYS Workbench finite element software,the structural strength of the main bearing mechanism is analyzed,and the results show that the strength meets the requirements.展开更多
文摘By means of finite element analysis methods calculated the stress, strainand displacement of the belt teeth and analysisied the factors such as load distribution,specific property coefficient of material and temperature variation, which influence the fatigue strength of the belt teeth..
基金Supported by National Natural Science Foundation of China(Grant Nos.51675486,51805487).
文摘The noncircular synchronous belt drive mechanism has demonstrated certain achievements and has been used in special fields.Research regarding noncircular synchronous belt drive mechanisms has focused on optimization design and kinematic analysis in China,whereas two pulley noncircular synchronous belt transmissions have been developed overseas.However,owing to the noncircular characteristics of the belt pulley,the real-time variation in the belt length slack during the transmission of the noncircular synchronous belt is significant,resulting in high probabilities of skipping and vibration.In this study,a noncircular tensioning pulley is added to create a stable three-pulley noncircular synchronous belt driving mechanism and a good synchronous belt tensioning,with no skipping;hence,the non-uniform output characteristic of the driven pulley is consistent with the theoretical value.In the circular noncircular noncircular three-pulley noncircular synchronous belt mechanism,the pitch curve of the driving synchronous belt pulley is circular,whereas those of the driven synchronous belt and tensioning pulleys are noncircular.To minimize the slack of the belt length of the synchronous belt and the constraint of the concavity and circumference of the tensioning pulley,an automatic optimization model of the tensioning pulley pitch curve is established.The motion simulation,analysis,and optimization code for a three-belt-pulley noncircular synchronous belt drive mechanism is written,and the variation in belt length slack under different speed ratios is analyzed based on several examples.The testbed for a circular-noncircular-noncircular three-pulley noncircular synchronous belt transmission mechanism is developed.The test shows that the three-pulley noncircular synchronous belt drives well.This study proposes an automatic optimization algorithm for the tensioning pulley pitch curve of a noncircular synchronous belt transmission mechanism;it yields a stable transmission of the noncircular synchronous belt transmission mechanism as well as non-uniform output characteristics.
文摘A new lightweight high-speed stacker is designed and developed.Its technical parameters are leading the industry level,which can meet the current requirements for high efficiency of intelligent logistics system.Starting from the key structure of stacker,through the theoretical analysis of the new mechanism and the comparison of the new and old equipment,the advantages of the new mechanism in improving the efficiency and lightweight design of stacker are explained.Through ANSYS Workbench finite element software,the structural strength of the main bearing mechanism is analyzed,and the results show that the strength meets the requirements.