期刊文献+
共找到2篇文章
< 1 >
每页显示 20 50 100
Investigation of Induced Unbalance Magnitude on Dynamic Characteristics of High-speed Turbocharger with Floating Ring Bearings 被引量:8
1
作者 Guang-Fu Bin Yuan Huang +2 位作者 Shuai-Ping Guo Xue-Jun Li Gang Wang 《Chinese Journal of Mechanical Engineering》 SCIE EI CAS CSCD 2018年第5期99-109,共11页
Due to operational wear and uneven carbon absorption in compressor and turbine wheels, the unbalance(me) vibration is induced and could lead to sub?synchronous vibration accidents for high?speed turbocharger(TC). Ther... Due to operational wear and uneven carbon absorption in compressor and turbine wheels, the unbalance(me) vibration is induced and could lead to sub?synchronous vibration accidents for high?speed turbocharger(TC). There are very few research works that focus on the magnitude e ects on such induced unbalance vibration. In this paper, a finite element model(FEM) is developed to characterize a realistic automotive TC rotor with floating ring bearings(FRBs). The nonlinear dynamic responses of the TC rotor system with di erent levels of induced unbalance magni?tude in compressor and turbine wheels are calculated. From the results of waterfall and response spectral intensity plots, the bifurcation and instability phenomena depend on unbalance magnitude during the startup of TC. The sub?synchronous component 0.12× caused rotor unstable is the dominant frequency for small induced unbalance. The nonlinear e ects of induced unbalance in the turbine wheel is obvious stronger than the compressor wheel. As the unbalance magnitude increases from 0.05 gbration 1·mm to 0.2 g·mm, the vibration component changes from mainly 0.12× to synchronous vi×. When unbalance increases continuously, the rotor vibration response amplitude is rapidly growing and the 1× caused by the large unbalance excitation becomes the dominant frequency. A suitable un?balance magnitude of turbine wheel and compressor wheel for the high?speed TC rotor with FRBs is proposed: the value of induced un?balance magnitude should be kept around 0.2 g·mm. 展开更多
关键词 High?speed TC with FRBs Induced unbalance magnitude Nonlinear dynamic response Sub?synchronous vibration Stability
下载PDF
Synchronization of two coupled exciters in a vibrating system of spatial motion 被引量:25
2
作者 Chunyu Zhao Hongtao Zhu +1 位作者 Yimin Zhang Bangchun Wen 《Acta Mechanica Sinica》 SCIE EI CAS CSCD 2010年第3期477-493,共17页
The paper proposes an analytical approach to investigate the synchronization of the two coupled exciters in a vibrating system of spatial motion. Introducing the distur- bance parameters for average angular velocity o... The paper proposes an analytical approach to investigate the synchronization of the two coupled exciters in a vibrating system of spatial motion. Introducing the distur- bance parameters for average angular velocity of two excit- ers, we deduce the non-dimensional coupling equations of angular velocities of two exciters, in which the inertia cou- pling matrix is symmetric and the stiffness coupling matrix is antisymmetric in a non-resonant vibrating system. The analysis of the coupling dynamic characteristic shows that the coupled cosine effect of the phase angles will cause the torque acting on two motors to limit the increase of phase difference between two exciters as well as sustain its sym- metry of two exciters during the running process. It physi- cally explains the peculiarity of self-synchronization of two exciters. The cosine effect of phase angles of the vibrations excited by each exciter will decrease its moment of inertia. The residual moment of inertia of each exciter represents its relative moment of inertia. The stability condition of synchro- nization of two exciters is that the relative non-dimensional moments of inertia of two exciters are all greater than zero and four times their product is greater than the square of their coefficient of coupled cosine effect of phase angles, which is equivalent to that the inertia coupling matrix is positive definite and all its elements are positive. The numeric results show that the structure of the vibrating system can ensure the stability condition of synchronous operation. 展开更多
关键词 Frequency capture - StabilitySynchronization Vibrating system -Vibratory synchronization transmission
下载PDF
上一页 1 下一页 到第
使用帮助 返回顶部