Hydrogen storage composite alloy Ti0.10Zr0.15V0.35Cr0.10Ni0.30–10% LaNi3 was prepared by two-step arc-melting to improve the electro-catalytic activity and the kinetic performance of Ti-V-based solid solution alloy. ...Hydrogen storage composite alloy Ti0.10Zr0.15V0.35Cr0.10Ni0.30–10% LaNi3 was prepared by two-step arc-melting to improve the electro-catalytic activity and the kinetic performance of Ti-V-based solid solution alloy. The electrochemical properties and synergetic effect of the composite alloy electrode were systematically investigated by using X-ray diffractometry, field emission scanning electron microscopy, energy-dispersive spectrometry, electrochemical impedance spectroscopy and galvanostatic charge/discharge test. It is found that the main phase of the composite alloy is composed of V-based solid solution phase with a BCC structure and C14 Laves phase with hexagonal structure, while the secondary phase is formed in the composite alloy. The comprehensive electrochemical properties of the composite alloy electrode are significantly improved. The activation cycle number, the maximum discharge capacity and the low temperature dischargeability of the composite alloy are 5 cycles, 362.5 mA-h/g and 65.84% at 233 K, respectively. It is suggested that distinct synergetic effect occurs in the activation process, composite process, cyclic process and discharge process at a low or high temperature under different current densities, in the charge–transfer resistance and exchange current density.展开更多
In this study, a hybrid process using non‐thermal plasma (NTP) and photocatalytic oxidation (PCO) was adopted for the degradation of gas‐phase toluene using TiO2 as the photocatalyst. To discover the synergetic effe...In this study, a hybrid process using non‐thermal plasma (NTP) and photocatalytic oxidation (PCO) was adopted for the degradation of gas‐phase toluene using TiO2 as the photocatalyst. To discover the synergetic effect between NTP and PCO, the performances of both sole (O3, UV, NTP, and PCO) and combined (O3 + TiO2, O3 + UV, NTP + UV, O3 + PCO, and NTP + PCO) processes were investigated from different perspectives, such as the toluene removal efficiency, selectivity of COx, mineralization rate, ozone utilization, and the generation of by‐products. The toluene removal efficiency of the combined NTP + PCO process was 80.2%, which was much higher than that of a sole degradation process such as NTP (18.8%) and PCO (13.4%). The selectivity of CO2 and the ozone utilization efficiency also significantly improved. The amount of by‐products in the gas phase and the carbon‐ based intermediates adsorbed on the catalyst surface dramatically reduced. The improvement in the overall performances of the combined NTP + PCO process was mainly ascribed to the efficient utilization of ozone in the photocatalytic oxidation, and the ozone further acting as an electron acceptor and scavenger, generating more hydroxyl radicals and reducing the recombination of electron‐ hole pairs.展开更多
4-Chlorophenol (4-CP) solution was treated by dual-frequency ultrasound inconjunction with Fenton reagent, and obvious improvement in the 4-CP degradation rate was observedin this advanced oxidation process. Experimen...4-Chlorophenol (4-CP) solution was treated by dual-frequency ultrasound inconjunction with Fenton reagent, and obvious improvement in the 4-CP degradation rate was observedin this advanced oxidation process. Experimental results showed that ultrasonic intensity,saturating gas and pH value affected greatly the 4-CP removal rate. Among four different saturatinggases (Ar, O_2, air and N_2), 4-CP degradation with Ar-saturated solution was the best. However, inthe view of practical wastewater treatment, using oxygen as the saturating gas would be moreeconomical. The addition of Fenton reagent followed the first-order kinetics and increased the 4-CPdegradation rate. The 4-CP removal rate increased by around 126% within 15 min treatment. Thesynergetic effect of dual-frequency ultrasound with Fenton reagent on 4-CP degradation was obviouslyobserved.展开更多
An evidence for the synergetic effect between the stacked bed of Mo/γ-Al2O3 and Ni/γ-Al2O3 in the hydrodenitrogenation (HDN) reaction of quinoline has been provided in this paper. The synergism factor decreases wh...An evidence for the synergetic effect between the stacked bed of Mo/γ-Al2O3 and Ni/γ-Al2O3 in the hydrodenitrogenation (HDN) reaction of quinoline has been provided in this paper. The synergism factor decreases when the reaction temperature increases (280?340 ?C). The synergetic effect leads to improve the hydrogenation activity for the stacked bed compared with the single Mo/γ-Al2O3 bed, which may be attributed to the generation of hydrogen spillover on the Ni/γ-Al2O3 catalyst.展开更多
Synergetic effects for p-nitrophenol degradation were observed in the combination of two-advanced oxidation processes, UV/Fe3+ and electrocatalysis. The enhancement of removal rate for p-nitrophenol and COD was aroun...Synergetic effects for p-nitrophenol degradation were observed in the combination of two-advanced oxidation processes, UV/Fe3+ and electrocatalysis. The enhancement of removal rate for p-nitrophenol and COD was around 123% and 278%, respectively. The possible contributions for the synergetic effects were the electrochemically regeneration of ferric ion and the role of the oxygen that formed on the anode.展开更多
The use of carbon‐based materials is an appealing strategy to solve the issue of excessive CO_(2) emis‐sions.In particular,metal‐free nitrogen‐doped carbon materials(mf‐NCs)have the advantages of convenient synth...The use of carbon‐based materials is an appealing strategy to solve the issue of excessive CO_(2) emis‐sions.In particular,metal‐free nitrogen‐doped carbon materials(mf‐NCs)have the advantages of convenient synthesis,cost‐effectiveness,and high conductivity and are ideal electrocatalysts for the CO_(2) reduction reaction(CO_(2)RR).However,the unclear identification of the active N sites and the low intrinsic activity of mf‐NCs hinder the further development of high‐performance CO_(2)RR electrocat‐alysts.Achieving precise control over the synthesis of mf‐NC catalysts with well‐defined active N‐species sites is still challenging.To this end,we adopted a facile synthesis method to construct a set of mf‐NCs as robust catalysts for CO_(2)RR.The resulting best‐performing catalyst obtained a Far‐adaic efficiency of CO of approximately 90%at−0.55 V(vs.reversible hydrogen electrode)and good stability.The electrocatalytic performance and in situ attenuated total reflectance surface‐enhanced infrared absorption spectroscopy measurements collectively revealed that graphitic and pyridinic N can synergistically adsorb CO_(2) and H_(2)O and thus promote CO_(2) activation and protonation.展开更多
A novel fluidized electrochemical reactor that integrated advanced electrochemical oxidation with activated carbon (AC) fluidization in a single cell was developed to model pollutant p-nitrophenol (PNP) abatement. AC ...A novel fluidized electrochemical reactor that integrated advanced electrochemical oxidation with activated carbon (AC) fluidization in a single cell was developed to model pollutant p-nitrophenol (PNP) abatement. AC fluidization could enhance COD removal by 22%-30%. In such a combined process, synergetic effects on PNP and COD removal was found, with their removal rate being enhanced by 137.8% and 97.8%, respectively. AC could be electrochemically regenerated and reused, indicating the combined process would be promising for treatment of biorefractory organic pollutants.展开更多
The effects of NaA1H4, TiF3 and NaA1H4-TiF3 co-additive on dehydriding reaction of Mg(A1H4)2 are systematically investigated. The on- set dehydrogenation temperature of the co-doped Mg(A1H4)2 composites decreased ...The effects of NaA1H4, TiF3 and NaA1H4-TiF3 co-additive on dehydriding reaction of Mg(A1H4)2 are systematically investigated. The on- set dehydrogenation temperature of the co-doped Mg(A1H4)2 composites decreased to 74 ℃, which is about 59 ℃ lower than that of pure Mg(A1H4)2. The dehydrogenation kinetics of NaA1H4-TiF3 co-doped Mg(A1H4)2 sample was also improved, which released about 94% hydrogen within 48 min, but no visible hydrogen was released from pure Mg(A1H4)2 under the same conditions. The activation energy of co-doped Mg(A1H4)2 was 85.6 kJ.mol-t, which was significantly lower than that of additive-free Mg(A1H4)2 sample. The synergetic effects of NaA1H4 and TiF3 on the dehydrogenation performance of Mg(A1H4)2 were confirmed. In addition, a possible catalytic mechanism is discussed, regarding the different roles of NaA1H4 and TiF3 on Mg(A1H4)2.展开更多
Diffusion has been systematically described as the main mechanism of chloride transport in reinforced concrete(RC) structure, especially when the concrete is in a saturated state. However, the single mechanism of di...Diffusion has been systematically described as the main mechanism of chloride transport in reinforced concrete(RC) structure, especially when the concrete is in a saturated state. However, the single mechanism of diffusion is not able to describe the actual chloride ingress in the nonsaturated concrete. Instead, it is dominated by the interaction of diffusion and convection. With the synergetic effects of various factors taken into account, this study aimed to modify and develop an analytical convection- diffusion coupling model for chloride transport in nonsaturated concrete. The model was verified by simulation of laboratory tests and field measurement. The results of comparison study demonstrate that the analytical model developed in this study is efficient and accurate in predicting the chloride profiles in the nonsaturated concrete.展开更多
Designing highly active and durable electrocatalysts towards oxygen reduction reaction(ORR)plays a paramount importance for proton exchange membrane fuel cells.Pt-based binary alloys Pt-M(M=3d-transition metals)posses...Designing highly active and durable electrocatalysts towards oxygen reduction reaction(ORR)plays a paramount importance for proton exchange membrane fuel cells.Pt-based binary alloys Pt-M(M=3d-transition metals)possessing excellent electronic and geometric properties have received increasing interests as highly active electrocatalysts.Herein,we report a series of Pt_(x)Co/C(x=1,2,3)catalysts by a facile one-pot soft-chemistry method.In the acidic conditions,the mass activities of PtCo/C,Pt_(2)Co/C and Pt_(3)Co/C are 0.526,0.462 and 0.441 A·mgPt^(-1),which are 2.60,2.31 and 2.22 times higher than that of Pt/C(0.200 A·mgPt^(-1)),respectively.The specific activities of PtCo/C,Pt_(2)Co/C and Pt_(3)Co/C are 706.59,679.41 and 801.83μA·cm^(-2),which are accordingly 2.89,2.76 and 3.28 times higher than that of Pt/C(244.75μA·cm^(-2)).Notably,Pt_(3)Co/C shows a remarkable durability.After 5000 cycles of the accelerated durability testing,the mass activity and specific activity of Pt_(3)Co/C catalyst are 2.47 and 3.80 times higher than that of the commercial Pt/C,respectively.The improved ORR activity and durability can be ascribed to the synergistic interaction between Pt and Co.展开更多
Biogas is a renewable biomass energy source mainly composed of CH4 and CO_(2).Dry reforming is a promising technology for the high-value utilization of biogas.Some impurity gases in biogas can not be completely remove...Biogas is a renewable biomass energy source mainly composed of CH4 and CO_(2).Dry reforming is a promising technology for the high-value utilization of biogas.Some impurity gases in biogas can not be completely removed after pretreatment,which may affect the performance of dry reforming.In this study,the influence of typical impurities H_(2)S and NH_(3) on dry reforming was studied using Ni/MgO catalyst.The results showed that low concentration of H_(2)S in biogas could cause serious deactivation of catalyst.Characterization results including EDS,XPS and TOF-SIMS confirmed the adsorption of sulfur on the catalyst surface,which was the cause of catalyst poisoning.We used air calcination method to regenerate the sulfur-poisoned catalysts and found that the regeneration temperature higher than 500℃could help catalyst recover the original activity.NH_(3)in the concentration range of 50–10000 ppm showed a slight inhibitory effect on biogas dry reforming.The decline rate of biogas conversion efficiency increased with the increase of NH_(3) concentration.This was related to the reduction of oxygen activity on catalyst surface caused by NH_(3).The synergetic effect of H_(2)S and NH_(3)in biogas was investigated.The results showed that biogas conversion decreased faster under the coexistence of H_(2)S and NH_(3)than under the effect of H_(2)S alone,so as the surface oxygen activity of catalyst.Air calcination regeneration could also recover the activity of the deactivated catalyst under the synergetic effect of H_(2)S and NH_(3).展开更多
In late November 2022,most regions in China were hit by a strong northwest-path cold wave,bringing a high-hazard extreme low-temperature event(ELTE).Several parts of Northwest China experienced extremely low temperatu...In late November 2022,most regions in China were hit by a strong northwest-path cold wave,bringing a high-hazard extreme low-temperature event(ELTE).Several parts of Northwest China experienced extremely low temperatures and record-breaking snow depths.A stratosphere-troposphere synergetic effect was suggested to be closely related to the ELTE according to a diagnostic analysis.On the one hand,the concurrent establishment of two blockings in Europe-Northeast Atlantic and North Pacific led to a polar vortex split at the tropopause,and the Arctic Oscillation phase subsequently turned negative.An airflow with high potential vorticity(PV)was squeezed out of the Arctic.Meanwhile,a high-PV air that originated from the lower stratospheric Arctic was conveyed southwards to the western Siberian Plain along the sloping isentropic surface.This condition triggered a tropospheric response in which the East Asia trough deepened due to the intensified cyclonic circulation induced by the high-PV intrusion.On the other hand,downward propagation of stratospheric anomalies accompanied by stratospheric polar vortex displacement and split was observed in mid-and late November,respectively.Changes in stratospheric circulation contributed to enhanced blockings over Europe-Northeast Atlantic in the lower stratosphere or upper troposphere.As a result,the inverted omega-shaped circulation pattern was formed in the middle to upper troposphere,and it consisted of the intensified East Asia trough and two blockings in the upstream and downstream regions.The high-PV air upstream of the East Asia trough was advected to China,which directly led to the outbreak of the ELTE.The establishment of double blockings and the displacement or split of the stratospheric polar vortex can be efficient signals for cold-event prediction in China.This study provides novel insights into the cause of ELTEs under warming climates in the future.展开更多
Effects of La, N, and P doping on the structural, electronic and optical properties of TiO_2 synthesized from TiCl_4 hydrolysis via a microwave-hydrothermal process were investigated by X-ray diffraction, transmission...Effects of La, N, and P doping on the structural, electronic and optical properties of TiO_2 synthesized from TiCl_4 hydrolysis via a microwave-hydrothermal process were investigated by X-ray diffraction, transmission electron microscopy, N_2 adsorption-desorption isotherm, X-ray photoelectron spectroscopy, electron paramagnetic resonance, UV-vis absorbance spectroscopy, photoelectrochemical measurements, and photoluminescence spectroscopy. The results showed that the presence of La in the tri-doped TiO_2 played a predominant role in inhibiting the recombination of the photogenerated electrons and holes. The existence of the substitutional N, interstitial N, and oxygen vacancies in TiO_2 lattices led to the band gap narrowing. It was P-doping rather than La or N doping that played a key role in inhibiting both anatase-to-rutile phase transformation and crystal growth, in stabilizing the mesoporous textural properties, and in increasing the content of surface bridging hydroxyl. Moreover, the tri-doping significantly enhanced the surface Ti^(4+)-O^(2-)-Ti^(4+)-O^(-·) species. All above-mentioned factors cooperated to result in the enhanced photoactivity of the tri-doped TiO_2. As a result, it exhibited the highest photoactivity towards the degradation of 4-chlorophenol(4-CP) under visible-light irradiation among all samples, which was much superior to commercial P25 TiO_2.展开更多
Pt-TiO2/Ce-MnOx catalysts were obtained by depositing TiO2 and platinum, respectively, on the Ce-Mn oxides prepared by co-precipitation method. The phases of CeO2 and anatase TiO2 were observed in the catalysts from X...Pt-TiO2/Ce-MnOx catalysts were obtained by depositing TiO2 and platinum, respectively, on the Ce-Mn oxides prepared by co-precipitation method. The phases of CeO2 and anatase TiO2 were observed in the catalysts from X-ray diffraction (XRD) patterns. X-ray photoelectron spectroscopy (XPS) revealed that lattice oxygen and surface active oxygen were found to be the major components of O 1 s. The experiment results showed that the kinetic constant of thermo-photocatalysis was 7.6 times of the kinetic constant of single photocatalysis, and was 2.29 times of the kinetic constant sum of photocatalytic and thermal catalytic reaction.展开更多
TiO2-NaYF4:Er^3+/Yb^3+-C3N4 composite photoanodes were successfully designed for the first time. The photoelectric conversion efficiency of TiO2-NaYF4:Er^3+/Yb^3+ C3N4 composite cell can result an efficiency of ...TiO2-NaYF4:Er^3+/Yb^3+-C3N4 composite photoanodes were successfully designed for the first time. The photoelectric conversion efficiency of TiO2-NaYF4:Er^3+/Yb^3+ C3N4 composite cell can result an efficiency of 7.37%, which is higher than those of pure TiO2 cell and TiO2-C3N4 composite cell. The enhancement of the efficiency can be attributed to the synergetic effect of NaYF4:Er^3+/Yb^3+ and C3N4. Elec- trochemical impedance spectroscopy analysis revealed that the interfacial resistance of the TiO2-dyelI3^-/I^- electrolyte interface of TiO2-NaYF4:Er^3+/Yb^3+-C3N4 composites cell was much smaller than that of pure TiO2 cell. In addition, the TiO2-NaYF4:Er^3+/Yb^3+-C3N4 composite cell had longer electron recombination time and shorter electron transport time than that of pure TiO2 cell.展开更多
In order to improve performance of Ti-V-based solid solution alloy, electrochemical characteristics and synergetic effect of Ti0.10Zr0.15V0.35Cr0.10Ni0.30-10 wt.%LaNi5 hydrogen storage composite electrode prepared by ...In order to improve performance of Ti-V-based solid solution alloy, electrochemical characteristics and synergetic effect of Ti0.10Zr0.15V0.35Cr0.10Ni0.30-10 wt.%LaNi5 hydrogen storage composite electrode prepared by two-step arc-melting were investigated system-atically. X-ray diffractometry (XRD) and scanning electron microscopy-energy dispersive spectroscopy (SEM-EDS) showed that the main phase of composite alloy was composed of V-based solid solution phase with a BCC structure and C14 Laves phase with hexagonal structure, while secondary phase also existed in the composite alloy. The results showed that electrochemical characteristics of the composite alloy elec-trode were significantly improved. It was suggested that synergetic effect appeared in the maximum discharge capacity of the composite alloy, synergetic effect of the discharge capacity appeared in the activation process, in the composite process, in the cyclic process, in the discharge process at low/high temperature and at different current densities, and synergetic effect existed in the charge-transfer resistance and in the ex-change current density, which seemed to be related to formation of the secondary phase.展开更多
The exploration of sustainable energy utilization requires the imple-mentation of advanced electrochemical devices for efficient energy conversion and storage,which are enabled by the usage of cost-effective,high-perf...The exploration of sustainable energy utilization requires the imple-mentation of advanced electrochemical devices for efficient energy conversion and storage,which are enabled by the usage of cost-effective,high-performance electro-catalysts.Currently,heterogeneous atomically dispersed catalysts are considered as potential candidates for a wide range of applications.Compared to conventional cata-lysts,atomically dispersed metal atoms in carbon-based catalysts have more unsatu-rated coordination sites,quantum size effect,and strong metal-support interactions,resulting in exceptional catalytic activity.Of these,dual-atomic catalysts(DACs)have attracted extensive attention due to the additional synergistic effect between two adja-cent metal atoms.DACs have the advantages of full active site exposure,high selectiv-ity,theoretical 100%atom utilization,and the ability to break the scaling relationship of adsorption free energy on active sites.In this review,we summarize recent research advancement of DACs,which includes(1)the comprehensive understanding of the synergy between atomic pairs;(2)the synthesis of DACs;(3)characterization meth-ods,especially aberration-corrected scanning transmission electron microscopy and synchrotron spectroscopy;and(4)electrochemical energy-related applications.The last part focuses on great potential for the electrochemical catalysis of energy-related small molecules,such as oxygen reduction reaction,CO_(2) reduction reaction,hydrogen evolution reaction,and N_(2) reduction reaction.The future research challenges and opportunities are also raised in prospective section.展开更多
Deep degradation of organic pollutants by sunlight-induced coupled photocatalytic and Fenton (photo-Fenton) reactions is of immense importance for water purification. In this work, we report a novel bifunctional catal...Deep degradation of organic pollutants by sunlight-induced coupled photocatalytic and Fenton (photo-Fenton) reactions is of immense importance for water purification. In this work, we report a novel bifunctional catalyst (Fe-PEI-CN) by codoping graphitic carbon nitride (CN) with polyethyleneimine ethoxylated (PEI) and Fe species, which demonstrated high activity during p-chlorophenol (p-ClPhOH) degradation via H_(2)O_(2) from the photocatalytic process. The relationship between the catalytic efficiency and the structure was explored using diff erent characterization methods. The Fe modification of CN was achieved through Fe-N coordination, which ensured high dispersion of Fe species and strong stability against leaching during liquid- phase reactions. The Fe modification initiated the Fenton reaction by activating H_(2)O_(2) into ·OH radicals for deep degradation of p-ClPhOH. In addition, it eff ectively promoted light absorption and photoelectron-hole (e-h ^(+) ) separation, corresponding to improved photocatalytic activity. On the other hand, PEI could significantly improve the ability of CN to generate H_(2)O_(2) through visible light photocatalysis. The maximum H_(2)O_(2) yield reached up to 102.6 μmol/L, which was 22 times higher than that of primitive CN. The cooperation of photocatalysis and the self-Fenton reaction has led to high-activity mineralizing organic pollutants with strong durability, indicating good potential for practical application in wastewater treatment.展开更多
The effect and mechanism of ultrasound and CaF_(2) on vanadium leaching from vanadium-bearing shale were investigated systematically.In consideration of the enhancement for vanadium recovery,the combination of ultraso...The effect and mechanism of ultrasound and CaF_(2) on vanadium leaching from vanadium-bearing shale were investigated systematically.In consideration of the enhancement for vanadium recovery,the combination of ultrasound and CaF_(2)(66.28%) exerts more evident effects than ultrasound(26.97%) and CaF_(2)(60.35%) alone,demonstrating the synergetic effect of ultrasound and CaF_(2).Kinetic analysis manifests that the product layer diffusion controls vanadium leaching in ultrasound system without CaF_(2),however product layer diffusion and interfacial reaction is the rate-controlling step for vanadium leaching in other three leaching systems.The combination of ultrasound and CaF_(2) notably decreases the activation energy(E_(a)) from 62.03 to 27.61 kJ/mol,nevertheless individual CaF_(2) only reduces the E_(a) to 50.70 kj/mol.X-ray diffraction and fourier transform infrared spectrometer analyses show that the decomposition degree of the vanadium-bearing mica structure is the most significant in ultrasound and CaF_(2) system,proving the highest release degree of vanadium.Specific surface area and pore distribution combined with scanning electron microscope analyses reveal that the action of ultrasound and CaF_(2) would provide higher specific surface area,more abundant pores structure and cracks for the particles,which further prompts the rapid diffusion of H^(+),F^(-)and HF,and achieves the conspicuous improvement of vanadium leaching recovery.展开更多
Au-Ag bimetallic nanoparticle‐supported microporous titanium silicalite‐1catalysts were prepared via a hydrothermal‐immersion method,and their structures were examined.These materials serve as efficient catalysts f...Au-Ag bimetallic nanoparticle‐supported microporous titanium silicalite‐1catalysts were prepared via a hydrothermal‐immersion method,and their structures were examined.These materials serve as efficient catalysts for the photosynthesis of propylene oxide via the epoxidation of propene.The Au/Ag mass ratio and reaction temperature were demonstrated to have significant effects on the catalytic activity and selectivity of propylene oxide.The optimal formation rate(68.3μmol/g·h)and selectivity(52.3%)toward propylene oxide were achieved with an Au:Ag mass ratio of4:1.Notably,the strong synergistic effect between Au and Ag resulted in superior photocatalysis of the bimetallic systems compared with those of the individual systems.A probable reaction mechanism was proposed based on the theoretical and experimental results.展开更多
基金Project (B2011203074) supported by the Natural Science Foundation of Hebei Province, ChinaProject (201101A129) supported by the Technology Research and Development Program of Qinhuangdao, Hebei Province, China
文摘Hydrogen storage composite alloy Ti0.10Zr0.15V0.35Cr0.10Ni0.30–10% LaNi3 was prepared by two-step arc-melting to improve the electro-catalytic activity and the kinetic performance of Ti-V-based solid solution alloy. The electrochemical properties and synergetic effect of the composite alloy electrode were systematically investigated by using X-ray diffractometry, field emission scanning electron microscopy, energy-dispersive spectrometry, electrochemical impedance spectroscopy and galvanostatic charge/discharge test. It is found that the main phase of the composite alloy is composed of V-based solid solution phase with a BCC structure and C14 Laves phase with hexagonal structure, while the secondary phase is formed in the composite alloy. The comprehensive electrochemical properties of the composite alloy electrode are significantly improved. The activation cycle number, the maximum discharge capacity and the low temperature dischargeability of the composite alloy are 5 cycles, 362.5 mA-h/g and 65.84% at 233 K, respectively. It is suggested that distinct synergetic effect occurs in the activation process, composite process, cyclic process and discharge process at a low or high temperature under different current densities, in the charge–transfer resistance and exchange current density.
基金supported by the National Key Research and Development Plan of China (2016YFC0204700)National Natural Science Foundation of China (NSFC-51578488)+3 种基金Zhejiang Provincial "151" Talents Program (2013)Key Project of Zhejiang Provincial Science and Technology Programthe Program for Zhejiang Leading Team of S&T Innovation (2013TD07)the Changjiang Scholar Incentive Program (2009)~~
文摘In this study, a hybrid process using non‐thermal plasma (NTP) and photocatalytic oxidation (PCO) was adopted for the degradation of gas‐phase toluene using TiO2 as the photocatalyst. To discover the synergetic effect between NTP and PCO, the performances of both sole (O3, UV, NTP, and PCO) and combined (O3 + TiO2, O3 + UV, NTP + UV, O3 + PCO, and NTP + PCO) processes were investigated from different perspectives, such as the toluene removal efficiency, selectivity of COx, mineralization rate, ozone utilization, and the generation of by‐products. The toluene removal efficiency of the combined NTP + PCO process was 80.2%, which was much higher than that of a sole degradation process such as NTP (18.8%) and PCO (13.4%). The selectivity of CO2 and the ozone utilization efficiency also significantly improved. The amount of by‐products in the gas phase and the carbon‐ based intermediates adsorbed on the catalyst surface dramatically reduced. The improvement in the overall performances of the combined NTP + PCO process was mainly ascribed to the efficient utilization of ozone in the photocatalytic oxidation, and the ozone further acting as an electron acceptor and scavenger, generating more hydroxyl radicals and reducing the recombination of electron‐ hole pairs.
基金Partly supported by the National Natural Science Foundation of China (No. 20176053)Academic Foundation of Zhejiang University of Technology (No. 20040004).
文摘4-Chlorophenol (4-CP) solution was treated by dual-frequency ultrasound inconjunction with Fenton reagent, and obvious improvement in the 4-CP degradation rate was observedin this advanced oxidation process. Experimental results showed that ultrasonic intensity,saturating gas and pH value affected greatly the 4-CP removal rate. Among four different saturatinggases (Ar, O_2, air and N_2), 4-CP degradation with Ar-saturated solution was the best. However, inthe view of practical wastewater treatment, using oxygen as the saturating gas would be moreeconomical. The addition of Fenton reagent followed the first-order kinetics and increased the 4-CPdegradation rate. The 4-CP removal rate increased by around 126% within 15 min treatment. Thesynergetic effect of dual-frequency ultrasound with Fenton reagent on 4-CP degradation was obviouslyobserved.
基金supported by the State Key Development Program for Basic Research of China (No. 2010CB226905)supported by the Basic Research Program " Green Chemistry and Engineering of Heavy Oil Conversionwith High Efficiency "
文摘An evidence for the synergetic effect between the stacked bed of Mo/γ-Al2O3 and Ni/γ-Al2O3 in the hydrodenitrogenation (HDN) reaction of quinoline has been provided in this paper. The synergism factor decreases when the reaction temperature increases (280?340 ?C). The synergetic effect leads to improve the hydrogenation activity for the stacked bed compared with the single Mo/γ-Al2O3 bed, which may be attributed to the generation of hydrogen spillover on the Ni/γ-Al2O3 catalyst.
文摘Synergetic effects for p-nitrophenol degradation were observed in the combination of two-advanced oxidation processes, UV/Fe3+ and electrocatalysis. The enhancement of removal rate for p-nitrophenol and COD was around 123% and 278%, respectively. The possible contributions for the synergetic effects were the electrochemically regeneration of ferric ion and the role of the oxygen that formed on the anode.
文摘The use of carbon‐based materials is an appealing strategy to solve the issue of excessive CO_(2) emis‐sions.In particular,metal‐free nitrogen‐doped carbon materials(mf‐NCs)have the advantages of convenient synthesis,cost‐effectiveness,and high conductivity and are ideal electrocatalysts for the CO_(2) reduction reaction(CO_(2)RR).However,the unclear identification of the active N sites and the low intrinsic activity of mf‐NCs hinder the further development of high‐performance CO_(2)RR electrocat‐alysts.Achieving precise control over the synthesis of mf‐NC catalysts with well‐defined active N‐species sites is still challenging.To this end,we adopted a facile synthesis method to construct a set of mf‐NCs as robust catalysts for CO_(2)RR.The resulting best‐performing catalyst obtained a Far‐adaic efficiency of CO of approximately 90%at−0.55 V(vs.reversible hydrogen electrode)and good stability.The electrocatalytic performance and in situ attenuated total reflectance surface‐enhanced infrared absorption spectroscopy measurements collectively revealed that graphitic and pyridinic N can synergistically adsorb CO_(2) and H_(2)O and thus promote CO_(2) activation and protonation.
文摘A novel fluidized electrochemical reactor that integrated advanced electrochemical oxidation with activated carbon (AC) fluidization in a single cell was developed to model pollutant p-nitrophenol (PNP) abatement. AC fluidization could enhance COD removal by 22%-30%. In such a combined process, synergetic effects on PNP and COD removal was found, with their removal rate being enhanced by 137.8% and 97.8%, respectively. AC could be electrochemically regenerated and reused, indicating the combined process would be promising for treatment of biorefractory organic pollutants.
基金supported by the MOST Project(2010CB631303,2012AA051901)NSFC(5117108)+1 种基金111 Project(B12015)MOE(IRT-13R30)
文摘The effects of NaA1H4, TiF3 and NaA1H4-TiF3 co-additive on dehydriding reaction of Mg(A1H4)2 are systematically investigated. The on- set dehydrogenation temperature of the co-doped Mg(A1H4)2 composites decreased to 74 ℃, which is about 59 ℃ lower than that of pure Mg(A1H4)2. The dehydrogenation kinetics of NaA1H4-TiF3 co-doped Mg(A1H4)2 sample was also improved, which released about 94% hydrogen within 48 min, but no visible hydrogen was released from pure Mg(A1H4)2 under the same conditions. The activation energy of co-doped Mg(A1H4)2 was 85.6 kJ.mol-t, which was significantly lower than that of additive-free Mg(A1H4)2 sample. The synergetic effects of NaA1H4 and TiF3 on the dehydrogenation performance of Mg(A1H4)2 were confirmed. In addition, a possible catalytic mechanism is discussed, regarding the different roles of NaA1H4 and TiF3 on Mg(A1H4)2.
基金Funded by the National Natural Science Foundation of China(Nos.51278304,U1134209,U1434204&51422814)the National Basic Research Program(973 Program)of China(No.011-CB013604)the Technology Research and Development Program(Basic Research Project)of Shenzhen(Nos.JCYJ20120613174456685&JCYJ20130329143859418)
文摘Diffusion has been systematically described as the main mechanism of chloride transport in reinforced concrete(RC) structure, especially when the concrete is in a saturated state. However, the single mechanism of diffusion is not able to describe the actual chloride ingress in the nonsaturated concrete. Instead, it is dominated by the interaction of diffusion and convection. With the synergetic effects of various factors taken into account, this study aimed to modify and develop an analytical convection- diffusion coupling model for chloride transport in nonsaturated concrete. The model was verified by simulation of laboratory tests and field measurement. The results of comparison study demonstrate that the analytical model developed in this study is efficient and accurate in predicting the chloride profiles in the nonsaturated concrete.
基金financially supported by the Project of National Natural Science Foundation of China(No.5202780089)。
文摘Designing highly active and durable electrocatalysts towards oxygen reduction reaction(ORR)plays a paramount importance for proton exchange membrane fuel cells.Pt-based binary alloys Pt-M(M=3d-transition metals)possessing excellent electronic and geometric properties have received increasing interests as highly active electrocatalysts.Herein,we report a series of Pt_(x)Co/C(x=1,2,3)catalysts by a facile one-pot soft-chemistry method.In the acidic conditions,the mass activities of PtCo/C,Pt_(2)Co/C and Pt_(3)Co/C are 0.526,0.462 and 0.441 A·mgPt^(-1),which are 2.60,2.31 and 2.22 times higher than that of Pt/C(0.200 A·mgPt^(-1)),respectively.The specific activities of PtCo/C,Pt_(2)Co/C and Pt_(3)Co/C are 706.59,679.41 and 801.83μA·cm^(-2),which are accordingly 2.89,2.76 and 3.28 times higher than that of Pt/C(244.75μA·cm^(-2)).Notably,Pt_(3)Co/C shows a remarkable durability.After 5000 cycles of the accelerated durability testing,the mass activity and specific activity of Pt_(3)Co/C catalyst are 2.47 and 3.80 times higher than that of the commercial Pt/C,respectively.The improved ORR activity and durability can be ascribed to the synergistic interaction between Pt and Co.
文摘Biogas is a renewable biomass energy source mainly composed of CH4 and CO_(2).Dry reforming is a promising technology for the high-value utilization of biogas.Some impurity gases in biogas can not be completely removed after pretreatment,which may affect the performance of dry reforming.In this study,the influence of typical impurities H_(2)S and NH_(3) on dry reforming was studied using Ni/MgO catalyst.The results showed that low concentration of H_(2)S in biogas could cause serious deactivation of catalyst.Characterization results including EDS,XPS and TOF-SIMS confirmed the adsorption of sulfur on the catalyst surface,which was the cause of catalyst poisoning.We used air calcination method to regenerate the sulfur-poisoned catalysts and found that the regeneration temperature higher than 500℃could help catalyst recover the original activity.NH_(3)in the concentration range of 50–10000 ppm showed a slight inhibitory effect on biogas dry reforming.The decline rate of biogas conversion efficiency increased with the increase of NH_(3) concentration.This was related to the reduction of oxygen activity on catalyst surface caused by NH_(3).The synergetic effect of H_(2)S and NH_(3)in biogas was investigated.The results showed that biogas conversion decreased faster under the coexistence of H_(2)S and NH_(3)than under the effect of H_(2)S alone,so as the surface oxygen activity of catalyst.Air calcination regeneration could also recover the activity of the deactivated catalyst under the synergetic effect of H_(2)S and NH_(3).
基金sponsored by the Guangdong Major Project of Basic and Applied Basic Research(2020B0301030004)the Anhui Provincial Natural Science Foundation(2208085MD102)+3 种基金the National Natural Science Foundation of China(NSFC41790471 and NSFC41976221)the China Meteorological Administration Special Foundation for Innovation and Development(CXFZ2022J068)Key Innovation Team of China Meteorological Administration:Climate Change Detection and Response(CMA2022ZD03)Youth Innovation Team of China Meteorological Administration:Meteorological Disaster Risk Assessment(CMA2023QN01).
文摘In late November 2022,most regions in China were hit by a strong northwest-path cold wave,bringing a high-hazard extreme low-temperature event(ELTE).Several parts of Northwest China experienced extremely low temperatures and record-breaking snow depths.A stratosphere-troposphere synergetic effect was suggested to be closely related to the ELTE according to a diagnostic analysis.On the one hand,the concurrent establishment of two blockings in Europe-Northeast Atlantic and North Pacific led to a polar vortex split at the tropopause,and the Arctic Oscillation phase subsequently turned negative.An airflow with high potential vorticity(PV)was squeezed out of the Arctic.Meanwhile,a high-PV air that originated from the lower stratospheric Arctic was conveyed southwards to the western Siberian Plain along the sloping isentropic surface.This condition triggered a tropospheric response in which the East Asia trough deepened due to the intensified cyclonic circulation induced by the high-PV intrusion.On the other hand,downward propagation of stratospheric anomalies accompanied by stratospheric polar vortex displacement and split was observed in mid-and late November,respectively.Changes in stratospheric circulation contributed to enhanced blockings over Europe-Northeast Atlantic in the lower stratosphere or upper troposphere.As a result,the inverted omega-shaped circulation pattern was formed in the middle to upper troposphere,and it consisted of the intensified East Asia trough and two blockings in the upstream and downstream regions.The high-PV air upstream of the East Asia trough was advected to China,which directly led to the outbreak of the ELTE.The establishment of double blockings and the displacement or split of the stratospheric polar vortex can be efficient signals for cold-event prediction in China.This study provides novel insights into the cause of ELTEs under warming climates in the future.
基金Project supported by the Natural Science Foundation of Heilongjiang Province(E201323)the Science and Technology Research Program of Education Bureau of Heilongjiang Province(12531213)
文摘Effects of La, N, and P doping on the structural, electronic and optical properties of TiO_2 synthesized from TiCl_4 hydrolysis via a microwave-hydrothermal process were investigated by X-ray diffraction, transmission electron microscopy, N_2 adsorption-desorption isotherm, X-ray photoelectron spectroscopy, electron paramagnetic resonance, UV-vis absorbance spectroscopy, photoelectrochemical measurements, and photoluminescence spectroscopy. The results showed that the presence of La in the tri-doped TiO_2 played a predominant role in inhibiting the recombination of the photogenerated electrons and holes. The existence of the substitutional N, interstitial N, and oxygen vacancies in TiO_2 lattices led to the band gap narrowing. It was P-doping rather than La or N doping that played a key role in inhibiting both anatase-to-rutile phase transformation and crystal growth, in stabilizing the mesoporous textural properties, and in increasing the content of surface bridging hydroxyl. Moreover, the tri-doping significantly enhanced the surface Ti^(4+)-O^(2-)-Ti^(4+)-O^(-·) species. All above-mentioned factors cooperated to result in the enhanced photoactivity of the tri-doped TiO_2. As a result, it exhibited the highest photoactivity towards the degradation of 4-chlorophenol(4-CP) under visible-light irradiation among all samples, which was much superior to commercial P25 TiO_2.
文摘Pt-TiO2/Ce-MnOx catalysts were obtained by depositing TiO2 and platinum, respectively, on the Ce-Mn oxides prepared by co-precipitation method. The phases of CeO2 and anatase TiO2 were observed in the catalysts from X-ray diffraction (XRD) patterns. X-ray photoelectron spectroscopy (XPS) revealed that lattice oxygen and surface active oxygen were found to be the major components of O 1 s. The experiment results showed that the kinetic constant of thermo-photocatalysis was 7.6 times of the kinetic constant of single photocatalysis, and was 2.29 times of the kinetic constant sum of photocatalytic and thermal catalytic reaction.
基金supported by the National Natural Science Foundation of China (21471050 and 21501052)the China Postdoctoral Science Foundation (2015M570304)+2 种基金the Postdoctoral Science Foundation of Heilongjiang Province (LBH-TZ06019)Heilongjiang Province Natural Science Foundation (ZD201301)the Science Foundation for Excellent Youth of Harbin City of China (2016RQQXJ099)
文摘TiO2-NaYF4:Er^3+/Yb^3+-C3N4 composite photoanodes were successfully designed for the first time. The photoelectric conversion efficiency of TiO2-NaYF4:Er^3+/Yb^3+ C3N4 composite cell can result an efficiency of 7.37%, which is higher than those of pure TiO2 cell and TiO2-C3N4 composite cell. The enhancement of the efficiency can be attributed to the synergetic effect of NaYF4:Er^3+/Yb^3+ and C3N4. Elec- trochemical impedance spectroscopy analysis revealed that the interfacial resistance of the TiO2-dyelI3^-/I^- electrolyte interface of TiO2-NaYF4:Er^3+/Yb^3+-C3N4 composites cell was much smaller than that of pure TiO2 cell. In addition, the TiO2-NaYF4:Er^3+/Yb^3+-C3N4 composite cell had longer electron recombination time and shorter electron transport time than that of pure TiO2 cell.
基金Project supported by the Natural Science Foundation of Hebei Province (B2011203074)
文摘In order to improve performance of Ti-V-based solid solution alloy, electrochemical characteristics and synergetic effect of Ti0.10Zr0.15V0.35Cr0.10Ni0.30-10 wt.%LaNi5 hydrogen storage composite electrode prepared by two-step arc-melting were investigated system-atically. X-ray diffractometry (XRD) and scanning electron microscopy-energy dispersive spectroscopy (SEM-EDS) showed that the main phase of composite alloy was composed of V-based solid solution phase with a BCC structure and C14 Laves phase with hexagonal structure, while secondary phase also existed in the composite alloy. The results showed that electrochemical characteristics of the composite alloy elec-trode were significantly improved. It was suggested that synergetic effect appeared in the maximum discharge capacity of the composite alloy, synergetic effect of the discharge capacity appeared in the activation process, in the composite process, in the cyclic process, in the discharge process at low/high temperature and at different current densities, and synergetic effect existed in the charge-transfer resistance and in the ex-change current density, which seemed to be related to formation of the secondary phase.
基金This work was financially supported by the National Key Research and Development Program of China(2018YFA0702002)the Beijing Natural Science Foundation(Z210016)+1 种基金the National Natural Science Foundation of China(51967020,21935001)Shanxi Energy Internet Research Institute(SXEI 2023A004).
文摘The exploration of sustainable energy utilization requires the imple-mentation of advanced electrochemical devices for efficient energy conversion and storage,which are enabled by the usage of cost-effective,high-performance electro-catalysts.Currently,heterogeneous atomically dispersed catalysts are considered as potential candidates for a wide range of applications.Compared to conventional cata-lysts,atomically dispersed metal atoms in carbon-based catalysts have more unsatu-rated coordination sites,quantum size effect,and strong metal-support interactions,resulting in exceptional catalytic activity.Of these,dual-atomic catalysts(DACs)have attracted extensive attention due to the additional synergistic effect between two adja-cent metal atoms.DACs have the advantages of full active site exposure,high selectiv-ity,theoretical 100%atom utilization,and the ability to break the scaling relationship of adsorption free energy on active sites.In this review,we summarize recent research advancement of DACs,which includes(1)the comprehensive understanding of the synergy between atomic pairs;(2)the synthesis of DACs;(3)characterization meth-ods,especially aberration-corrected scanning transmission electron microscopy and synchrotron spectroscopy;and(4)electrochemical energy-related applications.The last part focuses on great potential for the electrochemical catalysis of energy-related small molecules,such as oxygen reduction reaction,CO_(2) reduction reaction,hydrogen evolution reaction,and N_(2) reduction reaction.The future research challenges and opportunities are also raised in prospective section.
基金the National Key Research and Development Program of China (No. 2020YFA0211004)Key Grant of Nation Science Funding of China (No. 22236005)+5 种基金Nation Science Funding of China (No. 22376141)Ministry of Education of China (No. PCSIRT_IRT_16R49)“111” Innovation and Talent Recruitment Base (D18020)Shanghai Government (No. 20ZR1440700)Shanghai Engineering Research Center of Green Energy Chemical Engineering (No. 18DZ2254200)Scientific and Technological Innovation Team for Green Catalysis and Energy Materialien Yunnan Institutions of Higher Learning, and Surface project of Yunnan Province science and technology Department (No. 20210 A070001-050).
文摘Deep degradation of organic pollutants by sunlight-induced coupled photocatalytic and Fenton (photo-Fenton) reactions is of immense importance for water purification. In this work, we report a novel bifunctional catalyst (Fe-PEI-CN) by codoping graphitic carbon nitride (CN) with polyethyleneimine ethoxylated (PEI) and Fe species, which demonstrated high activity during p-chlorophenol (p-ClPhOH) degradation via H_(2)O_(2) from the photocatalytic process. The relationship between the catalytic efficiency and the structure was explored using diff erent characterization methods. The Fe modification of CN was achieved through Fe-N coordination, which ensured high dispersion of Fe species and strong stability against leaching during liquid- phase reactions. The Fe modification initiated the Fenton reaction by activating H_(2)O_(2) into ·OH radicals for deep degradation of p-ClPhOH. In addition, it eff ectively promoted light absorption and photoelectron-hole (e-h ^(+) ) separation, corresponding to improved photocatalytic activity. On the other hand, PEI could significantly improve the ability of CN to generate H_(2)O_(2) through visible light photocatalysis. The maximum H_(2)O_(2) yield reached up to 102.6 μmol/L, which was 22 times higher than that of primitive CN. The cooperation of photocatalysis and the self-Fenton reaction has led to high-activity mineralizing organic pollutants with strong durability, indicating good potential for practical application in wastewater treatment.
基金supported by the National Natural Science Foundation of China (51874222 and 52074204)the Fundamental Research Funds for the Central Universities (No. 2020-YB029)。
文摘The effect and mechanism of ultrasound and CaF_(2) on vanadium leaching from vanadium-bearing shale were investigated systematically.In consideration of the enhancement for vanadium recovery,the combination of ultrasound and CaF_(2)(66.28%) exerts more evident effects than ultrasound(26.97%) and CaF_(2)(60.35%) alone,demonstrating the synergetic effect of ultrasound and CaF_(2).Kinetic analysis manifests that the product layer diffusion controls vanadium leaching in ultrasound system without CaF_(2),however product layer diffusion and interfacial reaction is the rate-controlling step for vanadium leaching in other three leaching systems.The combination of ultrasound and CaF_(2) notably decreases the activation energy(E_(a)) from 62.03 to 27.61 kJ/mol,nevertheless individual CaF_(2) only reduces the E_(a) to 50.70 kj/mol.X-ray diffraction and fourier transform infrared spectrometer analyses show that the decomposition degree of the vanadium-bearing mica structure is the most significant in ultrasound and CaF_(2) system,proving the highest release degree of vanadium.Specific surface area and pore distribution combined with scanning electron microscope analyses reveal that the action of ultrasound and CaF_(2) would provide higher specific surface area,more abundant pores structure and cracks for the particles,which further prompts the rapid diffusion of H^(+),F^(-)and HF,and achieves the conspicuous improvement of vanadium leaching recovery.
基金supported by the National Natural Science Foundation of China(21576050)the Natural Science Foundation of Jiangsu Province(BK20150604)~~
文摘Au-Ag bimetallic nanoparticle‐supported microporous titanium silicalite‐1catalysts were prepared via a hydrothermal‐immersion method,and their structures were examined.These materials serve as efficient catalysts for the photosynthesis of propylene oxide via the epoxidation of propene.The Au/Ag mass ratio and reaction temperature were demonstrated to have significant effects on the catalytic activity and selectivity of propylene oxide.The optimal formation rate(68.3μmol/g·h)and selectivity(52.3%)toward propylene oxide were achieved with an Au:Ag mass ratio of4:1.Notably,the strong synergistic effect between Au and Ag resulted in superior photocatalysis of the bimetallic systems compared with those of the individual systems.A probable reaction mechanism was proposed based on the theoretical and experimental results.