期刊文献+
共找到1,070篇文章
< 1 2 54 >
每页显示 20 50 100
Alkyl dimethyl betaine activates the low-temperature collection capacity of sodium oleate for scheelite 被引量:2
1
作者 Xu Wang Zhengquan Zhang +5 位作者 Yanfang Cui Wei Li Congren Yang Hao Song Wenqing Qin Fen Jiao 《International Journal of Minerals,Metallurgy and Materials》 SCIE EI CSCD 2024年第1期71-80,共10页
The impact of alkyl dimethyl betaine (ADB) on the collection capacity of sodium oleate (NaOl) at low temperatures was evaluated using flotation tests at various scales. The low-temperature synergistic mechanism of ADB... The impact of alkyl dimethyl betaine (ADB) on the collection capacity of sodium oleate (NaOl) at low temperatures was evaluated using flotation tests at various scales. The low-temperature synergistic mechanism of ADB and NaOl was explored by infrared spectroscopy, X-ray photoelectron spectroscopy, surface tension measurement, foam performance test, and flotation reagent size measurement.The flotation tests revealed that the collector mixed with octadecyl dimethyl betaine (ODB) and NaOl in a mass ratio of 4:96 exhibited the highest collection capacity. The combined collector could increase the scheelite recovery by 3.48% at low temperatures of 8–12℃. This is particularly relevant in the Luanchuan area, which has the largest scheelite concentrate output in China. The results confirmed that ODB enhanced the collection capability of NaOl by improving the dispersion and foaming performance. Betaine can be introduced as an additive to NaOl to improve the recovery of scheelite at low temperatures. 展开更多
关键词 SCHEELITE BETAINE low temperature synergistic effect dispersion FOAMABILITY
下载PDF
Review on synergistic damage effect of irradiation and corrosion on reactor structural alloys 被引量:1
2
作者 Hui Liu Guan-Hong Lei He-Fei Huang 《Nuclear Science and Techniques》 SCIE EI CAS CSCD 2024年第3期109-141,共33页
The synergistic damage effect of irradiation and corrosion of reactor structural materials has been a prominent research focus.This paper provides a comprehensive review of the synergistic effects on the third-and fou... The synergistic damage effect of irradiation and corrosion of reactor structural materials has been a prominent research focus.This paper provides a comprehensive review of the synergistic effects on the third-and fourth-generation fission nuclear energy structural materials used in pressurized water reactors and molten salt reactors.The competitive mechanisms of multiple influencing factors,such as the irradiation dose,corrosion type,and environmental temperature,are summarized in this paper.Conceptual approaches are proposed to alleviate the synergistic damage caused by irradiation and corrosion,thereby promoting in-depth research in the future and solving this key challenge for the structural materials used in reactors. 展开更多
关键词 Irradiation and corrosion Synergistic effect Austenitic stainless steels Nickel-based alloys Reactors
下载PDF
Synergistic anionic/zwitterionic mixed surfactant system with high emulsification efficiency for enhanced oil recovery in low permeability reservoirs 被引量:1
3
作者 Hai-Rong Wu Rong Tan +6 位作者 Shi-Ping Hong Qiong Zhou Bang-Yu Liu Jia-Wei Chang Tian-Fang Luan Ning Kang Ji-Rui Hou 《Petroleum Science》 SCIE EI CAS CSCD 2024年第2期936-950,共15页
Emulsification is one of the important mechanisms of surfactant flooding. To improve oil recovery for low permeability reservoirs, a highly efficient emulsification oil flooding system consisting of anionic surfactant... Emulsification is one of the important mechanisms of surfactant flooding. To improve oil recovery for low permeability reservoirs, a highly efficient emulsification oil flooding system consisting of anionic surfactant sodium alkyl glucosyl hydroxypropyl sulfonate(APGSHS) and zwitterionic surfactant octadecyl betaine(BS-18) is proposed. The performance of APGSHS/BS-18 mixed surfactant system was evaluated in terms of interfacial tension, emulsification capability, emulsion size and distribution, wettability alteration, temperature-resistance and salt-resistance. The emulsification speed was used to evaluate the emulsification ability of surfactant systems, and the results show that mixed surfactant systems can completely emulsify the crude oil into emulsions droplets even under low energy conditions. Meanwhile,the system exhibits good temperature and salt resistance. Finally, the best oil recovery of 25.45% is achieved for low permeability core by the mixed surfactant system with a total concentration of 0.3 wt%while the molar ratio of APGSHS:BS-18 is 4:6. The current study indicates that the anionic/zwitterionic mixed surfactant system can improve the oil flooding efficiency and is potential candidate for application in low permeability reservoirs. 展开更多
关键词 Anionic/zwitterionic mixed surfactant system EMULSIFICATION Synergistic effect Low permeability reservoir Enhanced oil recovery
下载PDF
Composition Engineering Opens an Avenue Toward Efficient and Sustainable Nitrogen Fixation 被引量:1
4
作者 Xiaolin Wang Liming Yang 《Energy & Environmental Materials》 SCIE EI CAS CSCD 2024年第1期313-325,共13页
In this work,we open an avenue toward rational design of potential efficient catalysts for sustainable ammonia synthesis through composition engineering strategy by exploiting the synergistic effects among the active ... In this work,we open an avenue toward rational design of potential efficient catalysts for sustainable ammonia synthesis through composition engineering strategy by exploiting the synergistic effects among the active sites as exemplified by diatomic metals anchored graphdiyne via the combination of hierarchical high-throughput screening,first-principles calculations,and molecular dynamics simulations.Totally 43 highly efficient catalysts feature ultralow onset potentials(|U_(onset)|≤0.40 V)with Rh-Hf and Rh-Ta showing negligible onset potentials of 0 and-0.04 V,respectively.Extremely high catalytic activities of Rh-Hf and Rh-Ta can be ascribed to the synergistic effects.When forming heteronuclears,the combinations of relatively weak(such as Rh)and relatively strong(such as Hf or Ta)components usually lead to the optimal strengths of adsorption Gibbs free energies of reaction intermediates.The origin can be ascribed to the mediate d-band centers of Rh-Hf and Rh-Ta,which lead to the optimal adsorption strengths of intermediates,thereby bringing the high catalytic activities.Our work provides a new and general strategy toward the architecture of highly efficient catalysts not only for electrocatalytic nitrogen reduction reaction(eNRR)but also for other important reactions.We expect that our work will boost both experimental and theoretical efforts in this direction. 展开更多
关键词 composition engineering strategy diatomic catalysts electrocatalytic nitrogen reduction reaction first-principles calculations graphdiyne hierarchical high-throughput screening synergistic effects
下载PDF
Advances of Synergistic Electrocatalysis Between Single Atoms and Nanoparticles/Clusters
5
作者 Guanyu Luo Min Song +6 位作者 Qian Zhang Lulu An Tao Shen Shuang Wang Hanyu Hu Xiao Huang Deli Wang 《Nano-Micro Letters》 SCIE EI CAS CSCD 2024年第11期377-412,共36页
Combining single atoms with clusters or nanoparticles is an emerging tactic to design efficient electrocatalysts.Both synergy effect and high atomic utilization of active sites in the composite catalysts result in enh... Combining single atoms with clusters or nanoparticles is an emerging tactic to design efficient electrocatalysts.Both synergy effect and high atomic utilization of active sites in the composite catalysts result in enhanced electrocatalytic performance,simultaneously provide a radical analysis of the interrelationship between structure and activity.In this review,the recent advances of single-atomic site catalysts coupled with clusters or nanoparticles are emphasized.Firstly,the synthetic strategies,characterization,dynamics and types of single atoms coupled with clusters/nanoparticles are introduced,and then the key factors controlling the structure of the composite catalysts are discussed.Next,several clean energy catalytic reactions performed over the synergistic composite catalysts are illustrated.Eventually,the encountering challenges and recommendations for the future advancement of synergistic structure in energy-transformation electrocatalysis are outlined. 展开更多
关键词 Single atoms NANOPARTICLES CLUSTERS Synergistic composite catalysts Synergistic effect
下载PDF
In-depth analysis of VARTM-based solid-state supercapacitors utilizing CNT-dispersed cobalt-bismuth-samarium ternary hydroxide on woven carbon fiber for enhanced energy storage
6
作者 Fouzia Mashkoor Mohd Shoeb +2 位作者 Hongjun Jeong Mohammad Naved Khan Changyoon Jeong 《Journal of Energy Chemistry》 SCIE EI CAS CSCD 2024年第10期498-512,I0010,共16页
Multi-metal hydroxides possess unique physical and chemical properties,making them promising candidates for supercapacitor working electrodes.Enhancing their electrochemical performance can be achieved through a combi... Multi-metal hydroxides possess unique physical and chemical properties,making them promising candidates for supercapacitor working electrodes.Enhancing their electrochemical performance can be achieved through a combination with carbon materials.In this study,we synthesized a composite material by hydrothermally dispersed 4,6,and 10 wt%carbon nanotubes(CNT)into ternary cobaltbismuth-samarium hydroxide(CoBiSm-TOH).These nanocomposites were employed as the material for the working electrode in a supercapacitor.The findings reveal that at 1.5 A/g,the specific capacitance of CNT3@CoBiSm-TOH,using a three-electrode system,was found to be 852.91 F/g,higher than that of CoBi-BOH,CoBiSm-TOH,CNT1@CoBiSm-TOH and CNT5@CoBiSm-TOH-measuring 699.69,750.34,789.54 and 817.79 F/g,respectively.Moreover,CNT3@CoBiSm-TOH electrodes exhibited a capacitance retention of around 88%over 10,000 cycles.To demonstrate practical applicability,CNT3@CoBiSm-TOH was grown on woven carbon fiber(WCF),and a solid-state supercapacitor device was developed using the VARTM(vacuum-assisted resin transfer molding).This device displayed a specific capacitance of 272.67 F/g at 2.25 A/g.Notably,it achieved a maximum energy density of 53.01 Wh/kg at a power density of 750 W/kg and sustained excellent cycle stability over 50,000 cycles,maintaining 70%of its initial capacitance.These results underscore the importance of interfacial nanoengineering and provide crucial insights for the development of future energy storage devices. 展开更多
关键词 Ternary hydroxide Carbon nanotube Synergistic effect VARTM Supercapacitor
下载PDF
Temporal changes in mixing effects on litter decay and nitrogen release in a boreal riparian forest in northeastern China
7
作者 Simin Wang Bo Liu +2 位作者 Rui Li Xiaoxin Sun Rong Mao 《Journal of Forestry Research》 SCIE EI CAS CSCD 2024年第2期33-41,共9页
In riparian forests,litter decay provides essential energy and nutrients for both terrestrial and fluvial ecosystems.Litter mixing effects(LMEs)are crucial in regulating litter decay and nutrient dynamics,yet how LMEs... In riparian forests,litter decay provides essential energy and nutrients for both terrestrial and fluvial ecosystems.Litter mixing effects(LMEs)are crucial in regulating litter decay and nutrient dynamics,yet how LMEs change over time is unclear in riparian forests.In this study,leaf litter of three common species(Alnus sibirica Fisch.ex Turcz,Betula platyphylla Sukaczev,and Betula fruticosa Pall.)were mixed in an equal mass ratio and LMEs were measured for mass and nitrogen(N)remaining in whole litter mixtures over a 3-year period in a boreal riparian forest,northeastern China.LMEs were also assessed for component litter mass and N remaining by separating litter mixtures by species.During the decay of litter mixtures,antagonistic effects on mass and N remaining were dominant after one and two years of decay,whereas only additive effects were observed after three years.LMEs correlated negatively with functional diversity after the first and two years of decay but disappeared after three years.When sorting litter mixtures by species,non-additive LMEs on mass and N remaining decreased over incubation time.Moreover,non-additive LMEs were more frequent for litter of both B.platyphylla and B.fruticosa with lower N concentration than for A.sibirica litter with higher N concentration.These results indicate that incubation time is a key determinant of litter mixing effects during decay and highlight that late-stage litter mixture decay may be predicted from single litter decay dynamics in boreal riparian forests. 展开更多
关键词 BIODIVERSITY Litter quality Litter mixtures Synergistic effects Functional diversity
下载PDF
Enhanced ferroelectric and improved leakage of BFO-based thin films through increasing entropy strategy
8
作者 Dongfei Lu Guoqiang Xi +5 位作者 Hangren Li Jie Tu Xiuqiao Liu Xudong Liu Jianjun Tian Linxing Zhang 《International Journal of Minerals,Metallurgy and Materials》 SCIE EI CAS CSCD 2024年第10期2263-2273,共11页
BiFeO_(3)(BFO)has received considerable attention as a lead-free ferroelectric film due to its large theoretical remnant polariza-tion.However,BFO suffers from a large leakage current,resulting in poor ferroelectric p... BiFeO_(3)(BFO)has received considerable attention as a lead-free ferroelectric film due to its large theoretical remnant polariza-tion.However,BFO suffers from a large leakage current,resulting in poor ferroelectric properties.Herein,the sol-gel method was used to deposit a series of BFO-based thin films on fluorine-doped tin oxide substrates,and the effects of the substitution of the elements Co,Cu,Mn(B-site)and Sm,Eu,La(A-site)on the crystal structure,ferroelectricity,and leakage current of the BFO-based thin films were invest-igated.Results confirmed that lattice distortion by X-ray diffraction can be attributed to the substitution of individual elements in the BFO-based films.Sm and Eu substitutions contribute to the lattice distortion in a pseudo-cubic structure,while La is biased toward pseudo-tet-ragonal.Piezoelectric force microscopy confirmed that reversible switching of ferroelectric domains by nearly 180°can be realized through the prepared films.The ferroelectric hysteresis loops showed that the order for the polarization contribution is as follows:Cu>Co>Mn(B-site),Sm>La>Eu(A-site).The current density voltage curves indicated that the order for leakage contribution is as follows:Mn<Cu<Co(B-site),La<Eu<Sm(A-site).Scanning electron microscopy showed that the introduction of Cu elements facilitates the formation of dense grains,and the grain size distribution statistics proved that La element promotes the reduction of grain size,leading to the increase of grain boundaries and the reduction of leakage.Finally,a Bi_(0.985)Sm_(0.045)La_(0.03)Fe_(0.96)Co_(0.02)Cu_(0.02)O_(3)(SmLa-CoCu)thin film with a qualitative leap in the remnant polarization from 25.5(Bi_(0.985)Sm_(0.075)FeO_(3))to 98.8µC/cm^(2)(SmLa-CoCu)was prepared through the syner-gistic action of Sm,La,Co,and Cu elements.The leakage current is also drastically reduced from 160 to 8.4 mA/cm^(2)at a field strength of 150 kV/cm.Thus,based on the increasing entropy strategy of chemical engineering,this study focuses on enhancing ferroelectricity and decreasing leakage current,providing a promising path for the advancement of ferroelectric devices. 展开更多
关键词 increasing entropy SYNERGISTIC ferroelectric film remnant polarization leakage current
下载PDF
Probiotic cocktails accelerate baicalin metabolism in the ileum to modulate intestinal health in broiler chickens
9
作者 Mingkun Gao Chaoyong Liao +3 位作者 Jianyang Fu Zhonghua Ning Zengpeng Lv Yuming Guo 《Journal of Animal Science and Biotechnology》 SCIE CAS CSCD 2024年第2期779-794,共16页
Background Baicalin and probiotic cocktails are promising feed additives with broad application prospects.While probiotic cocktails are known to enhance intestinal health,the potential synergistic impact of combining ... Background Baicalin and probiotic cocktails are promising feed additives with broad application prospects.While probiotic cocktails are known to enhance intestinal health,the potential synergistic impact of combining baicalin with probiotic cocktails on the gut health of broiler chickens remains largely unexplored.Therefore,this study aims to investigate the influence of the combined administration of baicalin and probiotic cocktails on the composition of ileal and cecal microbiota in broiler chickens to elucidate the underlying mechanisms responsible for the healthpromoting effects.Results A total of 3201-day-old male Arbor Acres broilers were divided into 4 groups,each with 8 replicates of 10 chicks per replicate.Over a period of 42 d,the birds were fed a basal diet or the same diet supplemented with 37.5 g/t baicalin(BC),1,000 g/t probiotic cocktails(PC),or a combination of both BC(37.5 g/t)and PC(1,000 g/t).The results demonstrated that BC+PC exhibited positive synergistic effects,enhancing intestinal morphology,immune function,and barrier function.This was evidenced by increased VH/CD ratio,sIgA levels,and upregulated expression of occludin and claudin-1(P<0.05).16S rRNA analysis indicated that PC potentiated the effects of BC,particularly in the ileum,where BC+PC significantly increased theα-diversity of the ileal microbiota,altered itsβ-diversity,and increased the relative abundance of Flavonifractor(P<0.05),a flavonoid-metabolizing bacterium.Furthermore,Flavonifractor positively correlated with chicken ileum crypt depth(P<0.05).While BC+PC had a limited effect on cecal microbiota structure,the PC group had a very similar microbial composition to BC+PC,suggesting that the effect of PC at the distal end of the gut overshadowed those of BC.Conclusions We demonstrated the synergistic enhancement of gut health regulation in broiler chickens by combining baicalin and probiotic cocktails.Probiotic cocktails enhanced the effects of baicalin and accelerated its metabolism in the ileum,thereby influencing the ileal microbiota structure.This study elucidates the interaction mechanism between probiotic cocktails and plant extract additives within the host microbiota.These findings provide compelling evidence for the future development of feed additive combinations. 展开更多
关键词 BAICALIN Gut health Ileal microbiota Probiotic cocktails Synergistic effects
下载PDF
The Anticancer Potential of Quassinoids-A Mini-Review
10
作者 Cai Lu Si-Nan Lu +5 位作者 Di Di Wei-Wei Tao Lu Fan Jin-Ao Duan Ming Zhao Chun-Tao Che 《Engineering》 SCIE EI CAS CSCD 2024年第7期27-38,共12页
The anticancer potential of quassinoids has attracted a great deal of attention for decades,and scientific data revealing their possible applications in cancer management are continuously increasing in the literature.... The anticancer potential of quassinoids has attracted a great deal of attention for decades,and scientific data revealing their possible applications in cancer management are continuously increasing in the literature.Aside from the potent cytotoxic and antitumor properties of these degraded triterpenes,several quassinoids have exhibited synergistic effects with anticancer drugs.This article provides an overview of the potential anticancer properties of quassinoids,including their cytotoxic and antitumor activities,mechanisms of action,safety evaluation,and potential benefits in combination with anticancer drugs. 展开更多
关键词 Quassinoid Anticancer potential Antiproliferative mechanism Safety evaluation Synergistical combination with anticancer DRUGS
下载PDF
Side chain modulated ferrocene derivative as the interstitial conductive medium for high-performance and stable perovskite solar cells
11
作者 Boyuan Hu Jian Zhang +6 位作者 Yulin Yang Yayu Dong Jiaqi Wang Wei Wang Xingrui Zhang Kaifeng Lin Debin Xia 《Journal of Energy Chemistry》 SCIE EI CAS CSCD 2024年第11期645-655,共11页
The interfacial nonradiative recombination loss caused by the deep traps and mismatched band alignment restrained the commercial viability of perovskite solar cells(PSCs). Herein, we have constructed ferrocene carboxy... The interfacial nonradiative recombination loss caused by the deep traps and mismatched band alignment restrained the commercial viability of perovskite solar cells(PSCs). Herein, we have constructed ferrocene carboxylic acid(FcA) and octafluoropentyl-ferrocenyl-carboxylate(OFFcA) interstitial conductive mediums to modulate the integral heterointerface properties and the photovoltaic performances of PSCs.By comparing the passivation strengths of the two molecules, we found that the synergistic effects among Fc/Fc^(+)redox shuttle, C=O group, and F substituents realize the optimal elimination of interfacial trap sources. Electron-withdrawing F groups reinforce the capacity of the Fc/Fc^(+)redox shuttle for the healing of metallic Pb defects and provide extensive anchoring sites to stabilize the organic components.Additionally, the homogeneity of the OFFcA layer as well as the humidity stability of perovskite film are facilitated through the introduction of F substituents, which reduce the contact resistance and improve the interfacial charge transfer. The champion OFFcA-modified device delivers an exceptional PCE of 23.62%, exceeding those of the control(PCE=22.32%) and FcA-modified(PCE=23.06%) devices.Moreover, the unencapsulated OFFcA-modified device retains 82.7% of the primary efficiency at 60%RH for more than 50 d and only loses less than 10% of the primary efficiency when stored in a glove box for more than 2000 h. 展开更多
关键词 Perovskite solar cells Heterointerface energetic Defect elimination Synergistic effect Stability
下载PDF
The Combined Effect of Spin-Transfer Torque and Voltage-Controlled Strain Gradient on Magnetic Domain-Wall Dynamics:Toward Tunable Spintronic Neuron
12
作者 郁国良 何鑫岩 +7 位作者 施胜宾 邱阳 朱明敏 王嘉维 李燕 李元勋 王杰 周浩淼 《Chinese Physics Letters》 SCIE EI CAS CSCD 2024年第5期120-137,共18页
Magnetic domain wall(DW), as one of the promising information carriers in spintronic devices, have been widely investigated owing to its nonlinear dynamics and tunable properties. Here, we theoretically and numericall... Magnetic domain wall(DW), as one of the promising information carriers in spintronic devices, have been widely investigated owing to its nonlinear dynamics and tunable properties. Here, we theoretically and numerically demonstrate the DW dynamics driven by the synergistic interaction between current-induced spin-transfer torque(STT) and voltage-controlled strain gradient(VCSG) in multiferroic heterostructures. Through electromechanical and micromagnetic simulations, we show that a desirable strain gradient can be created and it further modulates the equilibrium position and velocity of the current-driven DW motion. Meanwhile, an analytical Thiele's model is developed to describe the steady motion of DW and the analytical results are quite consistent with the simulation data. Finally, we find that this combination effect can be leveraged to design DW-based biological neurons where the synergistic interaction between STT and VCSG-driven DW motion as integrating and leaking motivates mimicking leaky-integrate-and-fire(LIF) and self-reset function. Importantly, the firing response of the LIF neuron can be efficiently modulated, facilitating the exploration of tunable activation function generators, which can further help improve the computational capability of the neuromorphic system. 展开更多
关键词 TUNABLE SYNERGISTIC integrating
下载PDF
Perfecting HER catalysts via defects:Recent advances and perspectives
13
作者 Chengguang Lang Yantong Xu Xiangdong Yao 《Chinese Journal of Catalysis》 SCIE CAS CSCD 2024年第9期4-31,共28页
Defect engineering has become a promising approach to improve the performance of hydrogen evolution reaction(HER)catalysts.Non-noble transition metal-based catalysts(TMCs)have shown significant promise as effective al... Defect engineering has become a promising approach to improve the performance of hydrogen evolution reaction(HER)catalysts.Non-noble transition metal-based catalysts(TMCs)have shown significant promise as effective alternatives to traditional platinum-group catalysts,attracting considerable attention.However,the industrial application of TMCs in electrocatalytic hydrogen production necessitates further optimization to boost both catalytic activity and stability.This review comprehensively examines the types,fabrication methods,and characterization techniques of various defects that enhance catalytic HER activity.Key advancements include optimizing defect concentration and distribution,coupling heteroatoms with vacancies,and leveraging the synergy between bond lengths and defects.In-depth discussions highlight the electronic structure and catalytic mechanisms elucidated through in-situ characterization and density functional theory calculations.Additionally,future directions are identified,exploring novel defect types,emphasizing precision synthesis methods,industrial-scale preparation techniques,and strategies to enhance structural stability and understanding the in-depth catalytic mechanism.This review aims to inspire further research and development in defect-engineered HER catalysts,providing pathways for high efficiency and cost-effectiveness in hydrogen production. 展开更多
关键词 DEFECT Hydrogen evolution reaction Catalytic mechanism Synergistic catalysis Transition metal-based catalyst
下载PDF
A novel Ag/ZnO core-shell structure for efficient sterilization synergizing antibiotics and subsequently removing residuals
14
作者 Wenmei Han Wenli Wang +4 位作者 Jie Fan Runping Jia Xuchun Yang Tong Wu Qingsheng Wu 《Green Energy & Environment》 SCIE EI CAS CSCD 2024年第2期366-377,共12页
The massive use of antibiotics has led to the aggravation of bacterial resistance and also brought environmental pollution problems.This poses a great threat to human health.If the dosage of antibiotics is reduced by ... The massive use of antibiotics has led to the aggravation of bacterial resistance and also brought environmental pollution problems.This poses a great threat to human health.If the dosage of antibiotics is reduced by increasing its bactericidal performance,the emergence of drug resistance is certainly delayed,so that there's not enough time for developing drug resistance during treatment.Therefore,we selected typical representative materials of metal Ag and semiconductor ZnO nano-bactericides to design and synthesize Ag/ZnO hollow core-shell structures(AZ for short).Antibiotics are grafted on the surface of AZ through rational modification to form a composite sterilization system.The research results show that the antibacterial efficiency of the composite system is significantly increased,from the sum(34.7%+22.8%-57.5%)of the antibacterial efficiency of AZ and gentamicin to 80.2%,net synergizes 22.7%,which fully reflects the effect of 1+1>2.Therefore,the dosage of antibiotics can be drastically reduced in this way,which makes both the possibility of bacterial resistance and medical expenses remarkably decrease.Subsequently,residual antibiotics can be degraded under simple illumination using AZ-self as a photocatalyst,which cuts off the path of environmental pollution.In short,such an innovative route has guiding significance for drug resistance. 展开更多
关键词 Ag/ZnO hollow Core-shell structures ANTIBIOTICS GENTAMYCIN Synergistic sterilization PHOTODEGRADATION
下载PDF
Characteristic and optimization of ferrite-rich sulfoaluminate-based composite cement suitable for cold region tunnels
15
作者 PENG You LI Li +5 位作者 TAN Xian-jun QIU Xin ZHENG Pei-chao XIE Jun CHEN Wei-zhong REZIWANGULI Sha-ta-er 《Journal of Central South University》 SCIE EI CAS CSCD 2024年第8期2794-2809,共16页
To develop suitable grouting materials for water conveyance tunnels in cold regions,firstly,this study investigated the performance evolution of ferrite-rich sulfoaluminate-based composite cement(FSAC grouting materia... To develop suitable grouting materials for water conveyance tunnels in cold regions,firstly,this study investigated the performance evolution of ferrite-rich sulfoaluminate-based composite cement(FSAC grouting material)at 20 and 3℃.The results show that low temperature only delays the strength development of FSAC grouting material within the first 3 d.Then,the effect of four typical early strength synergists on the early properties of FSAC grouting material was evaluated to optimize the early(£1 d)strength at 3℃.The most effective synergist,Ca(HCOO)_(2),which enhances the low-temperature early strength without compromising fluidity was selected based on strength and fluidity tests.Its micro-mechanism was analyzed by XRD,TG,and SEM methods.The results reveal that the most suitable dosage range is 0.3 wt%−0.5 wt%.Proper addition of Ca(HCOO)_(2)changed the crystal morphology of the hydration products,decreased the pore size and formed more compact hydration products by interlocking and overlapping.However,excessive addition of Ca(HCOO)_(2)inhibited the hydration reaction,resulting in a simple and loose structure of the hydration products.The research results have reference value for controlling surrounding rock deformation and preventing water and mud inrushes during the excavation in cold region tunnels. 展开更多
关键词 ferrite-rich sulfoaluminate cement cold zone early strength synergist mechanical property MICRO-STRUCTURE pumped storage power
下载PDF
Preparation of Polyurea Elastomer with Flame Retardant, Insulation and Thermal Conductivity Properties
16
作者 方今 DONG Yang +3 位作者 LU Shangkai LIU Junbang AI Lianghui 刘平 《Journal of Wuhan University of Technology(Materials Science)》 SCIE EI CAS CSCD 2024年第3期781-789,共9页
By using 6,6-((sulfonylbis(4,1-phenylene)bis(azanediyl))bis(thiophen-2-ylm-ethylene))bis6H-di-benzo[c,e][1,2]oxaphosphinine 6-oxide(DOPO-N)as phosphorus-nitrogen flame retardant,the polyurea(PUA)with flame retardant p... By using 6,6-((sulfonylbis(4,1-phenylene)bis(azanediyl))bis(thiophen-2-ylm-ethylene))bis6H-di-benzo[c,e][1,2]oxaphosphinine 6-oxide(DOPO-N)as phosphorus-nitrogen flame retardant,the polyurea(PUA)with flame retardant properties(PUA/DOPO-N)was prepared.In addition,organically modified montmorillonite(OMMT)and magnesium hydroxide(MH)were used as co-effectors respectively,and the flame retardant PUA(PUA/DOPO-N/OMMT and PUA/DOPO-N/MH)were also prepared.Thermal properties,flame retardant properties,flame retardant mechanism and mechanical properties of PUA/DOPO-N,PUA/DOPO-N/OMMT and PUA/DOPO-N/MH were investigated by thermogravimetric(TG)analysis,limiting oxygen index(LOI),UL 94,cone calorimeter test,scanning electron microscopy(SEM),and tensile test.The results show that the LOI value of PUA/20%DOPO-N,PUA/18%DOPO-N/2%OMMT and PUA/15%DOPO-N/5%MH are 27.1%,27.7%,and 28.3%,respectively,and UL 94 V-0 rating is attained.Compared with PUA,the peak heat release rate(pk-HRR),total heat release(THR)and average effective heat combustion(av-EHC)of PUA/20%DOPO-N,PUA/18%DOPO-N/2%OMMT and PUA/15%DOPO-N/5%MH decrease significantly.SEM results indicate that the residual chars of PUA/20%DOPO-N,PUA/18%DOPO-N/2%OMMT and PUA/15%DOPO-N/5%MH are completer and more compact.The complex of DOPO-N/OMMT and DOPO-N/MH have synergistic flame retardancy.The mechanical properties of PUA can be improved by the addition of DOPO-N,DOPO-N/OMMT and DOPO-N/MH,respectively.The insulation performance test shows that the volume resistivity of PUA/20%DOPO-N is 6.25×10^(16)Ω.cm.Furthermore,by using modified boron nitride(MBN)as heat dissipating material,the complex of PUA/MBN was prepared,and the thermal conductivity of PUA/MBN was investigated.The thermal conductivity of PUA/8%MBN complex coating at room temperature is 0.166 W/(M·K),which is a 163%improvement over pure PUA. 展开更多
关键词 POLYUREA organic flame retardant inorganic flame retardant synergistic flame retardancy INSULATION thermal conductivity
下载PDF
Effect of Low pH on Forming Process of Desulfurization Gypsum Composite Boards Strengthened by Melamine-formaldehyde Resin
17
作者 CAO Lijiu ZHANG Jiyao +4 位作者 WANG Xinqi ZHANG Xinhe HUANG Jian CHEN Yufang JIN Tao 《Journal of Wuhan University of Technology(Materials Science)》 SCIE EI CAS CSCD 2024年第5期1223-1228,共6页
Through exploring the effects of low pH on the composite system of desulfurization gypsum(DG)enhanced by melamine-formaldehyde resin(MF),it is found that the inducing of sulfate-ion,in contrast to chloride and oxalate... Through exploring the effects of low pH on the composite system of desulfurization gypsum(DG)enhanced by melamine-formaldehyde resin(MF),it is found that the inducing of sulfate-ion,in contrast to chloride and oxalate ions,favors the longitudinal growth of the crystalline form of the hydration product,which was relatively simple and had the highest length to width(L/D)ratio.At the same time,MF can also improve L/D ratio of gypsum hydration products,which favors the formation of hydrated whiskers.Finally,in a composite system composed of hemihydrate gypsum,MF,and glass fibers,when dilute sulfuric acid was used to regulate pH=3-4,the tight binding formed among the components of the composite system compared to pH=5-6.The hydration product of gypsum adheres tightly to glass fiber surface and produces a good cross-linking and binding effect with MF.The flexural strength,compressive strength,elastic modulus,and water absorption of the desulphurized gypsum composite board is 22.7 MPa,39.8 MPa,5608 MPa,and 1.8%,respectively. 展开更多
关键词 MF-reinforced desulphurized gypsum board composite forming system low pH condition hydration process aspect ratio synergistic effect
下载PDF
Synergistic effects of the entomopathogenic fungus Isaria javanica and low doses of dinotefuran on the efficient control of the rice pest Sogatella furcifera
18
作者 Tingting Zhou Qian Zhao +4 位作者 Chengzhou Li Lu Ye Yanfang Li Nemat OKeyhani Zhen Huang 《Journal of Integrative Agriculture》 SCIE CAS CSCD 2024年第2期621-638,共18页
The rice planthopper,Sogatella furcifera,is a piercing-sucking insect pest of rice,Oryza sativa.It is responsible for significant crop yield losses,and has developed moderate to high resistance to several commonly use... The rice planthopper,Sogatella furcifera,is a piercing-sucking insect pest of rice,Oryza sativa.It is responsible for significant crop yield losses,and has developed moderate to high resistance to several commonly used chemical insecticides.We investigated the effects of the insect fungal pathogen Isaria javanica,alone and in combination with the chemical insecticide dinotefuran,on S.furcifera under both laboratory and field conditions.Our results show that I.javanica displays high infection efficiency and mortality for different stages of S.furcifera,reducing adult survival,female oviposition and ovary development.Laboratory bioassays showed that the combined use of I.javanica with a low dose(4-16 mg L^(-1))of dinotefuran resulted in higher mortality in S.furcifera than the use of I.javanica or dinotefuran alone.The combined treatment also had more significant effects on several host enzymes,including superoxide dismutase,catalase,peroxidase,and prophenol oxidase activities.In field trials,I.javanica effectively suppressed populations of rice planthoppers to low levels(22-64%of the level in untreated plots).Additional field experiments showed synergistic effects,i.e.,enhanced efficiency,for the control of S.furcifera populations using the combination of a low dose of I.javanica(1×10^(4) conidia mL^(-1))and a low dose of dinotefuran(~4.8-19.2%of normal field use levels),with control effects of>90%and a population level under 50 insects per 100 hills at 3-14 days post-treatment.Our findings indicate that the entomogenous fungus I.javanica offers an attractive biological control addition as part of the integrated pest management(IPM)practices for the control of rice plant pests. 展开更多
关键词 Isaria javanica Sogatella furcifera entomopathogenic fungus white planthopper RICE synergistic effect on pest control
下载PDF
TiO_(2)@C catalyzed hydrogen storage performance of Mg-Ni-Y alloy with LPSO and ternary eutectic structure
19
作者 Wenjie Song Wenhao Ma +5 位作者 Shuai He Wei Chen Jianghua Shen Dalin Sun Qiuming Wei Xuebin Yu 《Journal of Magnesium and Alloys》 SCIE EI CAS CSCD 2024年第2期767-778,共12页
A designed Mg_(88.7)Ni_(6.3)Y_(5)hydrogen storage alloy containing 14H type LPSO(long-period stacking ordered)and ternary eutectic structure was prepared by regulating the alloy composition and casting.The hydrogen st... A designed Mg_(88.7)Ni_(6.3)Y_(5)hydrogen storage alloy containing 14H type LPSO(long-period stacking ordered)and ternary eutectic structure was prepared by regulating the alloy composition and casting.The hydrogen storage performance of the alloy was improved by adding nano-flower-like TiO_(2)@C catalyst.The decomposition of the LPSO structure during hydrogenation led to the formation of plenty of nanocrystals which provided abundant interphase boundaries and activation sites.The nanoscale TiO_(2)@C catalyst was uniformly dispersed on the surface of alloy particles,and the"hydrogen overflow''effect of TiO_(2)@C accelerated the dissociation and diffusion of hydrogen on the surface of the alloy particles.As a result,the in-situ endogenous nanocrystals of the LPSO structure decomposition and the externally added flower-like TiO_(2)@C catalyst uniformly dispersed on the surface of the nanoparticles played a synergistic catalytic role in improving the hydrogen storage performance of the Mg-based alloy.With the addition of the TiO_(2)@C catalyst,the beginning hydrogen desorption temperature was reduced to 200℃.Furthermore,the saturated hydrogen absorption capacity of the sample was 5.32 wt.%,and it reached 4.25 wt.%H_(2) in 1 min at 200℃and 30 bar. 展开更多
关键词 Hydrogen storage Mg LPSO TiO_(2)@C Synergistic catalysis
下载PDF
Enhancing the Performance of Perovskite Light-Emitting Diodes via Synergistic Effect of Defect Passivation and Dielectric Screening
20
作者 Xuanchi Yu Jia Guo +11 位作者 Yulin Mao Chengwei Shan Fengshou Tian Bingheng Meng Zhaojin Wang Tianqi Zhang Aung Ko Ko Kyaw Shuming Chen Xiaowei Sun Kai Wang Rui Chen Guichuan Xing 《Nano-Micro Letters》 SCIE EI CAS CSCD 2024年第10期244-256,共13页
Metal halide perovskites,particularly the quasi-two-dimensional perovskite subclass,have exhibited considerable potential for next-generation electroluminescent materials for lighting and display.Nevertheless,the pres... Metal halide perovskites,particularly the quasi-two-dimensional perovskite subclass,have exhibited considerable potential for next-generation electroluminescent materials for lighting and display.Nevertheless,the presence of defects within these perovskites has a substantial influence on the emission efficiency and durability of the devices.In this study,we revealed a synergistic passivation mechanism on perovskite films by using a dual-functional compound of potassium bromide.The dual functional potassium bromide on the one hand can passivate the defects of halide vacancies with bromine anions and,on the other hand,can screen the charged defects at the grain boundaries with potassium cations.This approach effectively reduces the probability of carriers quenching resulting from charged defects capture and consequently enhances the radiative recombination efficiency of perovskite thin films,leading to a significant enhancement of photoluminescence quantum yield to near-unity values(95%).Meanwhile,the potassium bromide treatment promoted the growth of homogeneous and smooth film,facilitating the charge carrier injection in the devices.Consequently,the perovskite light-emitting diodes based on this strategy achieve a maximum external quantum efficiency of~21%and maximum luminance of~60,000 cd m^(-2).This work provides a deeper insight into the passivation mechanism of ionic compound additives in perovskite with the solution method. 展开更多
关键词 Synergistic passivation strategy Defects passivation Dielectric screening Perovskite light-emitting diodes
下载PDF
上一页 1 2 54 下一页 到第
使用帮助 返回顶部