期刊文献+
共找到3篇文章
< 1 >
每页显示 20 50 100
Stabilizing Buried Interface via Synergistic Effect of Fluorine and Sulfonyl Functional Groups Toward Efficient and Stable Perovskite Solar Cells 被引量:2
1
作者 Cheng Gong Cong Zhang +4 位作者 Qixin Zhuang Haiyun Li Hua Yang Jiangzhao Chen Zhigang Zang 《Nano-Micro Letters》 SCIE EI CAS CSCD 2023年第2期32-45,共14页
The interfacial defects and energy barrier are main reasons for interfacial nonradiative recombination.In addition,poor perovskite crystallization and incomplete conversion of PbI_(2) to perovskite restrict further en... The interfacial defects and energy barrier are main reasons for interfacial nonradiative recombination.In addition,poor perovskite crystallization and incomplete conversion of PbI_(2) to perovskite restrict further enhancement of the photovoltaic performance of the devices using sequential deposition.Herein,a buried interface stabilization strategy that relies on the synergy of fluorine(F)and sulfonyl(S=O)functional groups is proposed.A series of potassium salts containing halide and non-halogen anions are employed to modify SnO_(2)/perovskite buried interface.Multiple chemical bonds including hydrogen bond,coordination bond and ionic bond are realized,which strengthens interfacial contact and defect passivation effect.The chemical interaction between modification molecules and perovskite along with SnO_(2) heightens incessantly as the number of S=O and F augments.The chemical interaction strength between modifiers and perovskite as well as SnO_(2) gradually increases with the increase in the number of S=O and F.The defect passivation effect is positively correlated with the chemical interaction strength.The crystallization kinetics is regulated through the compromise between chemical interaction strength and wettability of substrates.Compared with Cl−,all non-halogen anions perform better in crystallization optimization,energy band regulation and defect passivation.The device with potassium bis(fluorosulfonyl)imide achieves a tempting efficiency of 24.17%. 展开更多
关键词 Perovskite solar cells Buried interface Multiple chemical bonds Synergistic effect of functional groups Defect passivation
下载PDF
Bottom-up holistic carrier management strategy induced synergistically by multiple chemical bonds to minimize energy losses for efficient and stable perovskite solar cells 被引量:1
2
作者 Baibai Liu Ru Li +10 位作者 Qixin Zhuang Xuemeng Yu Shaokuan Gong Dongmei He Qian Zhou Hua Yang Xihan Chen Shirong Lu Zong-Xiang Xu Zhigang Zang Jiangzhao Chen 《Journal of Energy Chemistry》 SCIE EI CAS CSCD 2023年第1期277-287,I0008,共12页
The defects from electron transport layer,perovskite layer and their interface would result in carrier nonradiative recombination losses.Poor buried interfacial contact is detrimental to charge extraction and device s... The defects from electron transport layer,perovskite layer and their interface would result in carrier nonradiative recombination losses.Poor buried interfacial contact is detrimental to charge extraction and device stability.Here,we report a bottom-up holistic carrier management strategy induced synergistically by multiple chemical bonds to minimize bulk and interfacial energy losses for high-performance perovskite photovoltaics.4-trifluoromethyl-benzamidine hydrochloride(TBHCl)containing–CF_(3),amidine cation and Cl^(-)is in advance incorporated into SnO_(2)colloid solution to realize bottom-up modification.The synergistic effect of multiple functional groups and multiple-bond-induced chemical interaction are revealed theoretically and experimentally.F and Cl^(-)can passivate oxygen vacancy and/or undercoordinated Sn^(4+)defects by coordinating with Sn^(4+).The F can suppress cation migration and modulate crystallization via hydrogen bond with FA^(+),and can passivate lead defects by coordinating with Pb^(2+).The–NH_(2)–C=NH^(+)_(2)and Cl^(-)can passivate cation and anion vacancy defects through ionic bonds with perovskites,respectively.Through TBHCl modification,the suppression of agglomeration of SnO_(2)nanoparticles,bulk and interfacial defect passivation,and release of tensile strains of perovskite films are demonstrated,which resulted in a PCE enhancement from 21.28%to 23.40%and improved stability.With post-treatment,the efficiency is further improved to 23.63%. 展开更多
关键词 Perovskite solar cells Bottom-up holistic carrier management strategy functional group synergistic effect Defect passivation Stress release
下载PDF
A Ni/Ni_(2)P heterostructure in modified porous carbon separator for boosting polysulfide catalytic conversion 被引量:2
3
作者 Jiayi Mao Dechao Niu +5 位作者 Gaoxu Huang Xiaopan Jin Chi Wei Jia Cai Yongsheng Li Jianlin Shi 《Science China Materials》 SCIE EI CAS CSCD 2022年第9期2453-2462,共10页
The intrinsic sluggish conversion kinetics and severe shuttle effect in lithium-sulfur(Li-S)batteries are responsible for their poor reversible capacity and cycling longevity,which have greatly hindered their practica... The intrinsic sluggish conversion kinetics and severe shuttle effect in lithium-sulfur(Li-S)batteries are responsible for their poor reversible capacity and cycling longevity,which have greatly hindered their practical applications.To address these drawbacks,herein,we design and construct a heterostructured Ni/Ni_(2)P embedded in a mesoporous carbon nanosphere composite(Ni/Ni_(2)P-MCN)for boosting polysulfide catalytic conversion in Li-S batteries.The Ni/Ni_(2)PMCN-modified separator could not only prevent the shuttle effect significantly through abundant chemical adsorptive sites,but also demonstrate superior catalytic reactivities for the conversion of polysulfides.More importantly,the conductive carbon matrix with an exposed mesoporous structure can serve as an effective physical barrier to accommodate deposited insoluble Li_(2)S.Consequently,the cells with the Ni/Ni_(2)P-MCN-modified separator exhibit greatly boosted rate capability(431 mA h g^(-1) at 5 C)and cycling stability(a capacity decay of 0.031% per cycle after 1500 cycles).Even at an enhanced sulfur loading of 4.2 mg cm^(-2),a stable and superior areal capacity(about 3.5 mA h cm^(-2))has been demonstrated.We envision that the unique Ni/Ni_(2)P heterostructure in the porous carbon matrix could offer great potential for highperformance and sustained energy storage devices. 展开更多
关键词 lithium-sulfur batteries modified separators Ni/Ni2P heterostructure mesoporous carbon synergistic function
原文传递
上一页 1 下一页 到第
使用帮助 返回顶部