In order to evaluate the precipitation forecast performance of mesoscale numerical model in Northeast China,mesoscale model in Liaoning Province and T213 model,and improve the ability to use their forecast products fo...In order to evaluate the precipitation forecast performance of mesoscale numerical model in Northeast China,mesoscale model in Liaoning Province and T213 model,and improve the ability to use their forecast products for forecasters,the synoptic verifications of their 12 h accumulated precipitation forecasts of 3 numerical modes from May to August in 2008 were made on the basis of different systems impacting weather in Liaoning Province.The time limitations were 24,36,48 and 60 h.The verified contents included 6 aspects such as intensity and position of precipitation center,intensity,location,scope and moving velocity of precipitation main body.The results showed that the three models had good forecasting capability for precipitation in Liaoning Province,but the cupacity of each model was obviously different.展开更多
Synoptic verification of medium-extended-range forecasts of the Northwest Pacific subtropical high (NWPSH) and South Asian high (SAH) is performed for the summers of 2010-2012 using TIGGE data from four operationa...Synoptic verification of medium-extended-range forecasts of the Northwest Pacific subtropical high (NWPSH) and South Asian high (SAH) is performed for the summers of 2010-2012 using TIGGE data from four operational centers at the CMA,ECMWF,JMA,and NCEP.The overall activities of the NW-PSH and SAH are examined along with their local characteristics such as the spatial coverage of each high in the East Asian key area (10°-40°N,105°-130°E),the mean position of the ridge of each high over 110°-122.5°E,the westward extent of the NWPSH ridge,and the eastward extent of the SAH ridge.Focus on the NWPSH and SAH is justified because these two systems have pronounced influences on the summertime persistent heavy rainfall in China.Although the overall activities of both highs are reproduced reasonably well in the TIGGE data,their spatial coverages are reduced in the East Asian key area and both of them are weaker compared with observations.On average,their ridges shift more northward relative to observations.The NWPSH ridge is less westward while the SAH ridge is generally more eastward early in the forecast but too westward later in the forecast.The JMA ensemble prediction system (EPS) produces the best mediumrange (1-10 days) forecasts of the NWPSH based on these metrics,while the ECMWF EPS produces the best medium-range forecasts of the SAH and the most reliable extended-range (11-15 days) forecasts of both highs.Forecasts of the spatial coverage of both highs in the East Asian key area and the mean positions of the ridges are generally valid out to lead times of 7-12 days.By contrast,forecasts of the longitudinal extent of the ridges are typically only valid to lead times of 5-7 days.All the four operational centers' models produce excellent forecasts of the mean zonal position of the SAH ridge.The ensemble mean forecast is more reliable than the control forecast over the areas where the NWPSH (20°-30°N,135°-165°E) and SAH (23°-30°N,70°-100°E) are most active.Forecasts of both highs have advantages and disadvantages in the peripheral areas away from their respective center of high activity.展开更多
文摘In order to evaluate the precipitation forecast performance of mesoscale numerical model in Northeast China,mesoscale model in Liaoning Province and T213 model,and improve the ability to use their forecast products for forecasters,the synoptic verifications of their 12 h accumulated precipitation forecasts of 3 numerical modes from May to August in 2008 were made on the basis of different systems impacting weather in Liaoning Province.The time limitations were 24,36,48 and 60 h.The verified contents included 6 aspects such as intensity and position of precipitation center,intensity,location,scope and moving velocity of precipitation main body.The results showed that the three models had good forecasting capability for precipitation in Liaoning Province,but the cupacity of each model was obviously different.
基金Supported by the National(Key)Basic Research and Development(973)Program of China(2012CB17204)
文摘Synoptic verification of medium-extended-range forecasts of the Northwest Pacific subtropical high (NWPSH) and South Asian high (SAH) is performed for the summers of 2010-2012 using TIGGE data from four operational centers at the CMA,ECMWF,JMA,and NCEP.The overall activities of the NW-PSH and SAH are examined along with their local characteristics such as the spatial coverage of each high in the East Asian key area (10°-40°N,105°-130°E),the mean position of the ridge of each high over 110°-122.5°E,the westward extent of the NWPSH ridge,and the eastward extent of the SAH ridge.Focus on the NWPSH and SAH is justified because these two systems have pronounced influences on the summertime persistent heavy rainfall in China.Although the overall activities of both highs are reproduced reasonably well in the TIGGE data,their spatial coverages are reduced in the East Asian key area and both of them are weaker compared with observations.On average,their ridges shift more northward relative to observations.The NWPSH ridge is less westward while the SAH ridge is generally more eastward early in the forecast but too westward later in the forecast.The JMA ensemble prediction system (EPS) produces the best mediumrange (1-10 days) forecasts of the NWPSH based on these metrics,while the ECMWF EPS produces the best medium-range forecasts of the SAH and the most reliable extended-range (11-15 days) forecasts of both highs.Forecasts of the spatial coverage of both highs in the East Asian key area and the mean positions of the ridges are generally valid out to lead times of 7-12 days.By contrast,forecasts of the longitudinal extent of the ridges are typically only valid to lead times of 5-7 days.All the four operational centers' models produce excellent forecasts of the mean zonal position of the SAH ridge.The ensemble mean forecast is more reliable than the control forecast over the areas where the NWPSH (20°-30°N,135°-165°E) and SAH (23°-30°N,70°-100°E) are most active.Forecasts of both highs have advantages and disadvantages in the peripheral areas away from their respective center of high activity.