Photocatalysis has emerged a promising strategy to remedy the current energy and environmental crisis due to its ability to directiy convert clean solar energy into chemical energy.Bismuth tungstate(Bi_(2)WO_(6))has b...Photocatalysis has emerged a promising strategy to remedy the current energy and environmental crisis due to its ability to directiy convert clean solar energy into chemical energy.Bismuth tungstate(Bi_(2)WO_(6))has been shown to be an excellent visible light response,a well-defined perovskite crystal structure,and an abundance of oxygen atoms(providing efficient channels for photogenerated carrier transfer)due to their suitable band gap,effective electron migration and separation,making them ideal photocatalysts.It has been extensively applied as photocatalyst in aspects including pollutant removal,carbon dioxide reduction,solar hydrogen production,ammonia synthesis by nitrogen photocatalytic reduction,and cancer therapy.In this review,the fabrication and application of Bi_(2)WO_(6) in photocatalysis were comprehensively discussed.The photocatalytic properties of BizwO-based materials were significantly enhanced by carbon modification,the construction of heterojunctions,and the atom doping to improve the photogenerated carrier migration rate,the number of surface active sites,and the photoexcitation ability of the composites.In addition,the potential development directions and the existing challenges to improve the photocatalytic performance of Bi_(2)WO_(6)-based materials were discussed.展开更多
基金This work was supported by the National Natural Science Foundation of China(No.52300209)the Guangdong Higher Education Institutions Innovative Research Team of Urban Water Cycle and Ecological Safety(China)(No.2023KCXTD053)+1 种基金the Shenzhen Science and Technology Innovation Commission(China)(Nos.WDZC20200821090937001 and KCXST20221021111401004)the Scientific Research Start-up Funds from Tsinghua Shenzhen International Graduate School(China)(No.QD2023020C).
文摘Photocatalysis has emerged a promising strategy to remedy the current energy and environmental crisis due to its ability to directiy convert clean solar energy into chemical energy.Bismuth tungstate(Bi_(2)WO_(6))has been shown to be an excellent visible light response,a well-defined perovskite crystal structure,and an abundance of oxygen atoms(providing efficient channels for photogenerated carrier transfer)due to their suitable band gap,effective electron migration and separation,making them ideal photocatalysts.It has been extensively applied as photocatalyst in aspects including pollutant removal,carbon dioxide reduction,solar hydrogen production,ammonia synthesis by nitrogen photocatalytic reduction,and cancer therapy.In this review,the fabrication and application of Bi_(2)WO_(6) in photocatalysis were comprehensively discussed.The photocatalytic properties of BizwO-based materials were significantly enhanced by carbon modification,the construction of heterojunctions,and the atom doping to improve the photogenerated carrier migration rate,the number of surface active sites,and the photoexcitation ability of the composites.In addition,the potential development directions and the existing challenges to improve the photocatalytic performance of Bi_(2)WO_(6)-based materials were discussed.