Dehydrogenation of formic acid (FA) is considered to be an effective solution for efficient storage and transport of hydrogen. For decades, highly effective catalysts for this purpose have been widely investigated, bu...Dehydrogenation of formic acid (FA) is considered to be an effective solution for efficient storage and transport of hydrogen. For decades, highly effective catalysts for this purpose have been widely investigated, but numerous challenges remain. Herein, the Pd_(x)Au_(1−x) (x = 0, 0.2, 0.4, 0.5, 0.6, 0.8, 1) alloys over the whole composition range were successfully prepared and used to catalyze FA hydrogen production efficiently near room temperature. Small PdAu nanoparticles (5–10 nm) were well-dispersed and supported on the activated carbon to form PdAu solid solution alloys via the eco-friendly slow synthesis methodology. The physicochemical properties of the PdAu alloys were comprehensively studied by utilizing various measurement methods, such as X-ray diffraction (XRD), N2 adsorption–desorption, high angle annular dark field-scanning transmission electron microscope (HAADF-STEM), X-ray photoelectrons spectroscopy (XPS). Notably, owing to the strong metal-support interaction (SMSI) and electron transfer between active metal Au and Pd, the Pd0.5Au0.5 obtained exhibits a turnover frequency (TOF) value of up to 1648 h−1 (313 K, nPd+Au/nFA = 0.01, nHCOOH/nHCOONa = 1:3) with a high activity, selectivity, and reusability in the FA dehydrogenation.展开更多
Nowadays, by the increasing attention to environment and high rate of fuel production, recycling of purge gas as reactant to a reactor is highly considered. In this study, it is proposed that the purge gases of methan...Nowadays, by the increasing attention to environment and high rate of fuel production, recycling of purge gas as reactant to a reactor is highly considered. In this study, it is proposed that the purge gases of methanol production unit, which are approximately15.018 t·h^(-1) in the largest methanol production complexes in the world, can be recycled to the reactor and utilized for increasing the production rate. Purge gas streams contain 63% hydrogen,20% carbon monoxide and carbon dioxide as reactants and 17% nitrogen and methane as inert. The recycling effect of beneficial components on methanol production rate has been investigated in this study. Simulation results show that methanol production enhances by recycling just hydrogen, carbon dioxide and carbon monoxide which is an effective configuration among the others. It is named as Desired Recycle Configuration(DRC) in this study. The optimum fraction of returning purge gas is calculated via one dimensional modeling of process and Response Surface Methodology(RSM) is applied to maximize the methanol flow rate and minimize the carbon dioxide flow rate. Simulation results illustrate that methanol flow rate increases by 0.106% in DRC compared to Conventional Recycle Configuration(CRC) which therefore shows the superiority of applying DRC to CRC.展开更多
In recent years,rare earth metal-organic frameworks(RE-MOFs)have attracted increasing attention because of abundant coordination behaviors,adjustable channels and stable networks.The various electron structures of rar...In recent years,rare earth metal-organic frameworks(RE-MOFs)have attracted increasing attention because of abundant coordination behaviors,adjustable channels and stable networks.The various electron structures of rare earth ions contribute to the catalytic applications of RE-MOFs and their derivates.In this review,we systematically summarize the research progress that using RE-MOFs and their derivates as catalysts for organic reaction,photocatalytic reaction,and CO oxidation reaction.The major parts include synthetic strategies and catalytic applications of the RE-MOFs.Finally,impressive achievements of RE-MOF catalysts are emerging and a prospect is provided for the development of RE-MOF catalysts at the end of the review.展开更多
基金the National Natural Science Foundation of China(Grant Nos.52176131 and 51888103),the Natural Science Foundation of Shaanxi Province,China(Grant Nos.2021JLM-18,2020JC-04,and 2023KXJ-228)the National Science and Technology Major Project of China(No.J2019-III-0018-0062)Xi’an Jiaotong University Special Research Project for Basic Research Business Expenses(No.xzy022022043).
文摘Dehydrogenation of formic acid (FA) is considered to be an effective solution for efficient storage and transport of hydrogen. For decades, highly effective catalysts for this purpose have been widely investigated, but numerous challenges remain. Herein, the Pd_(x)Au_(1−x) (x = 0, 0.2, 0.4, 0.5, 0.6, 0.8, 1) alloys over the whole composition range were successfully prepared and used to catalyze FA hydrogen production efficiently near room temperature. Small PdAu nanoparticles (5–10 nm) were well-dispersed and supported on the activated carbon to form PdAu solid solution alloys via the eco-friendly slow synthesis methodology. The physicochemical properties of the PdAu alloys were comprehensively studied by utilizing various measurement methods, such as X-ray diffraction (XRD), N2 adsorption–desorption, high angle annular dark field-scanning transmission electron microscope (HAADF-STEM), X-ray photoelectrons spectroscopy (XPS). Notably, owing to the strong metal-support interaction (SMSI) and electron transfer between active metal Au and Pd, the Pd0.5Au0.5 obtained exhibits a turnover frequency (TOF) value of up to 1648 h−1 (313 K, nPd+Au/nFA = 0.01, nHCOOH/nHCOONa = 1:3) with a high activity, selectivity, and reusability in the FA dehydrogenation.
文摘Nowadays, by the increasing attention to environment and high rate of fuel production, recycling of purge gas as reactant to a reactor is highly considered. In this study, it is proposed that the purge gases of methanol production unit, which are approximately15.018 t·h^(-1) in the largest methanol production complexes in the world, can be recycled to the reactor and utilized for increasing the production rate. Purge gas streams contain 63% hydrogen,20% carbon monoxide and carbon dioxide as reactants and 17% nitrogen and methane as inert. The recycling effect of beneficial components on methanol production rate has been investigated in this study. Simulation results show that methanol production enhances by recycling just hydrogen, carbon dioxide and carbon monoxide which is an effective configuration among the others. It is named as Desired Recycle Configuration(DRC) in this study. The optimum fraction of returning purge gas is calculated via one dimensional modeling of process and Response Surface Methodology(RSM) is applied to maximize the methanol flow rate and minimize the carbon dioxide flow rate. Simulation results illustrate that methanol flow rate increases by 0.106% in DRC compared to Conventional Recycle Configuration(CRC) which therefore shows the superiority of applying DRC to CRC.
基金Project supported by the National Natural Science Foundation of China(21832001,21771009,21573005,21621061)the National Key Research and Development Program of China(2016YFB0701100)。
文摘In recent years,rare earth metal-organic frameworks(RE-MOFs)have attracted increasing attention because of abundant coordination behaviors,adjustable channels and stable networks.The various electron structures of rare earth ions contribute to the catalytic applications of RE-MOFs and their derivates.In this review,we systematically summarize the research progress that using RE-MOFs and their derivates as catalysts for organic reaction,photocatalytic reaction,and CO oxidation reaction.The major parts include synthetic strategies and catalytic applications of the RE-MOFs.Finally,impressive achievements of RE-MOF catalysts are emerging and a prospect is provided for the development of RE-MOF catalysts at the end of the review.