Titanium monocarbide(TiC),which is the most stable titanium-based carbide,has attracted considerable interest in the fields of energy,catalysis,and structural materials due to its excellent properties.Synthesis of hig...Titanium monocarbide(TiC),which is the most stable titanium-based carbide,has attracted considerable interest in the fields of energy,catalysis,and structural materials due to its excellent properties.Synthesis of high-quality TiC powders with low cost and high efficiency is crucial for industrial applications;however major challenges face its realization.Herein,the methods for synthesizing TiC powders based on a reaction system are reviewed.This analysis is focused on the underlying mechanisms by which synthesis methods affect the quality of powders.Notably,strategies for improving the synthesis of highquality powders are analyzed from the perspective of enhancing heat and mass transfer processes.Furthermore,the critical issues,challenges,and development trends of the synthesis technology and application of high-quality TiC powder are discussed.展开更多
With the recent advancement in nanotechnology,nanoparticles(NPs)offer an ample variety of smart functions than conventional materials in various aspects.As compared to larger particles,NPs possess unique characteristi...With the recent advancement in nanotechnology,nanoparticles(NPs)offer an ample variety of smart functions than conventional materials in various aspects.As compared to larger particles,NPs possess unique characteristics and excellent abilities,such as low toxicity,chemical stability,surface functionality,and biocompatibility.These advantageous properties allow them to be widely utilized in many applications,including biomedical applications,energy applications,IT applications,and industrial applications.In order to fulfill the increasing demands of NP applications,existing NP synthesis methods need to be improved based on the requirements of different applications to further their usage.A comprehensive understanding of the relationships between synthesis parameters and properties of NPs can help us better fine-tune them with designed properties and minimal toxicity.This review paper will discuss the commonly used synthesis methods of functionalized NPs,as well as future directions and challenges to develop various synthesis methods further.展开更多
This study demonstrated the impacts of the synthesis methods on the textural structures,chemical properties,and Hg^(0)capture capability of the MnO_(x)system.Compared with the samples synthesized using the precipitati...This study demonstrated the impacts of the synthesis methods on the textural structures,chemical properties,and Hg^(0)capture capability of the MnO_(x)system.Compared with the samples synthesized using the precipitation(PR)and hydrothermal(HT)methods,the adsorbent prepared via the sol-gel(SG)technique gave the best performance.At 150℃,ca.90%Hg^(0)removal efficiency was reached after 7.5 h for MnO_(x)prepared by the SG method,ca.40%higher than that of the other two methods.The specific surface area of the adsorbent synthesized via the SG technique(23 m^(2)/g)was almost double that of the adsorbent prepared by the HT method(12 m^(2)/g)and three times that of the one prepared by the PR method(7 m^(2)/g).The presence of plentiful acid sites from the SG method facilitated the physisorption of Hg^(0),making more Hg^(0)available to be oxidized to HgO by the redox sites and thus giving the adsorbent prepared by the SG method the highest Hg^(0)removal efficiency.The strong oxidative ability accelerated the oxidation of the physically adsorbed Hg^(0)to HgO,which explained the higher Hg^(0)removal efficiency of the sample prepared using the HT method than that of the one synthesized by the PR technique.During the whole Hg^(0)removal cycles,chemisorption dominated,with the initial adsorption stage and the external mass-transfer process playing important roles.展开更多
The effect of synthesis methods on the activity of V/Ce/WTi catalysts was investigated for the selective catalytic reduction(SCR) of NO_x by NH_3. V/Ce/WTi-DP(deposition precipitation) catalyst showed excellent NH...The effect of synthesis methods on the activity of V/Ce/WTi catalysts was investigated for the selective catalytic reduction(SCR) of NO_x by NH_3. V/Ce/WTi-DP(deposition precipitation) catalyst showed excellent NH_3-SCR performance, especially the better medium-temperature activity and the less N_2O formation than V/Ce/WTi-IMP(impregnation). These catalysts were characterized by X-ray diffraction(XRD), Brumauer-Emmett-Teller(BET), X-ray photoelectron spectroscopy(XPS), temperature-programmed reduction(H_2-TPR), and in situ DRIFTS techniques. The XPS and H_2-TPR results revealed that V/Ce/WTi-DP exhibited more surface Ce species, higher level of Oα and higher reducibility of Ce species. Reflected by in situ DRIFTS results, the deposition precipitation method(DP) contributed to a greater amount of weakly adsorbed NO_2, monodentate nitrate and NH_3 species with better reactive activity. Meanwhile, the cis-N_2O_2^(2-) species, an intermediate for N_2O formation, was very limited. As a result, these advantages brought about the superior SCR activity and N_2 selectivity for V/Ce/WTi-DP.展开更多
High-entropy alloy nanoparticles(HEA NPs)containing four or more elements possess several advantages over traditional alloy nanoparticles(NPs),such as higher strength,greater thermal stability,enhanced ox-idation resi...High-entropy alloy nanoparticles(HEA NPs)containing four or more elements possess several advantages over traditional alloy nanoparticles(NPs),such as higher strength,greater thermal stability,enhanced ox-idation resistance,stronger catalytic activity,and greater flexibility in adjusting element composition and composition ratio.However,the development of HEA NPs has been limited by preparation difficulties caused by the challenge of achieving complete miscibility between multiple-component elements and the unique high-entropy states.In this review,we provide a comprehensive summary of recent break-throughs in synthesizing and fabricating HEA NPs.We describe the experimental procedures and princi-ples of various synthesis methods,including furnace pyrolysis,carbothermal shock(CTS)method,pulse laser,solvothermal method,microwave heating,hydrogen spillover-driven,sputtering deposition,anneal-ing on mesoporous materials,arc discharge methods and using liquid metal.Additionally,we delve into recent improvements made to some of these methods or novel NPs synthesized using them.Finally,we review the current applications of HEA NPs and provide insights into potential applications of this rapidly emerging research field.展开更多
Wastewater contamination by heavy metals and synthetic dyes presents a significant environmental challenge,necessitating effective and sustainable separation techniques.This review article provides a detailed examinat...Wastewater contamination by heavy metals and synthetic dyes presents a significant environmental challenge,necessitating effective and sustainable separation techniques.This review article provides a detailed examination of magnesium oxide(MgO)nanoparticles as an innovative nanoadsorbent for wastewater treatment,with a specific focus on heavy metal and dye removal.The review comprehensively explores various aspects of MgO nanoparticles,including their structural characteristics and synthesis techniques.The article delves into the morphology and crystallographic arrangement of MgO nanoparticles,offering insights into their structural attributes.Given the complexity of adsorption processes,the review identifies and analyzes parameters influencing the adsorption efficiency of MgO nanoparticles,such as temperature,pH,contact time,initial concentration,and co-existing ions.The interplay between these parameters and the adsorption capability of MgO nanoparticles emphasizes the importance of optimizing operational conditions.Furthermore,the review assesses various synthesis methods for MgO nanoparticles,including sol-gel,hydrothermal,precipitation,green synthesis,solvothermal,and template-assisted techniques.It discusses the advantages,limitations,and resulting nanoparticle characteristics of each method,enabling readers to grasp the implications of synthesis processes on adsorption efficiency.This comprehensive review consolidates current insights into the effectiveness of MgO nanoparticles as a potent nanoadsorbent for removing heavy metals and dyes from wastewater covering a wide spectrum of aspects related to MgO nanoparticles.Moreover,there is a need to investigate the use of MgO in the treatment of actual wastewater or river water,in order to leverage its cost-effectiveness and high efficiency for practical water treatment applications in real-time.展开更多
The component synthesis active vibration suppression method (CSVS) can be applied to suppress the vibration of flexible systems. By this method, several same or similar time-varying components are arranged according...The component synthesis active vibration suppression method (CSVS) can be applied to suppress the vibration of flexible systems. By this method, several same or similar time-varying components are arranged according to certain rules along the time axis. The synthesized command can suppress the arbitrary unwanted vibration harmonic while achieving the desired rigid body motion. The number of the components increases rapidly when the number of harmonic vibration is growing. In this article, the CSVS based on zero-placement technique is used to construct the synthesized command to suppress the multi-harmonics simultaneously in the discrete domain. The nature of zero-placement method is to put enough zeros to cancel system poles at necessary points. The designed synthesized command has equal time intervals between each component and which is much easier to be implemented. Using this method, the number of components increases linearly with the increasing of the number of being suppressed harmonics. For the spacecraft with flexible appendages, CSVS based on zero-placement is used to design the time optimal large angle maneuver control strategy. Simulations have verified the validity and superiority of the proposed approach.展开更多
Lithium-ion(Li-ion) battery and lithium-sulfur(Li-S) battery have attracted significant attention as promising components for large-scale energy storage because of high theoretical capacity of Li,excellent energy dens...Lithium-ion(Li-ion) battery and lithium-sulfur(Li-S) battery have attracted significant attention as promising components for large-scale energy storage because of high theoretical capacity of Li,excellent energy density or environmental friendness for two kinds of batteries.However,there still exist some respective obstacles for commercial applications,such as limited theoretical capacity,high cost and low conductivity of Li-ion cells or shuttle effect of lithium polysulfides of Li-S cells.As typical twodimensional materials,layered double hydroxides(LDHs) exhibit excellent potential in the field of energy storage due to facile tunability of composition,structure and morphology as well as convenient composite and strong catalytic properties.Consequently,various LDHs toward novel separators or interlayers,cathodes,anodes,and interesting catalytic templates are researched to resolve these challenges.In this review,the recent progress for LDHs applied in Li-ion batteries and Li-S batteries including the synthesis methods,designs and applications is presented and reviewed.Meanwhile,the existing challenges and future perspectives associated with material designs and practical applications of LDHs for these two classes of cells are discussed.WeWe hope that the review can attract more attention and inspire more profound researches toward the LDH-based electrochemical materials for energy storage.展开更多
Efficiency of calculating a dynamic response is an important point of the compliant mechanism for posture adjustment.Dynamic modeling with low orders of a 2R1T compliant parallel mechanism is studied in the paper.The ...Efficiency of calculating a dynamic response is an important point of the compliant mechanism for posture adjustment.Dynamic modeling with low orders of a 2R1T compliant parallel mechanism is studied in the paper.The mechanism with two out-of-plane rotational and one lifting degrees of freedom(DoFs)plays an important role in posture adjustment.Based on elastic beam theory,the stiffness matrix and mass matrix of the beam element are established where the moment of inertia is considered.To improve solving efficiency,a dynamic model with low orders of the mechanism is established based on a modified modal synthesis method.Firstly,each branch of the RPR type mechanism is divided into a substructure.Subsequently,a set of hypothetical modes of each substructure is obtained based on the C-B method.Finally,dynamic equation of the whole mechanism is established by the substructure assembly.A dynamic experiment is conducted to verify the dynamic characteristics of the compliant mechanism.展开更多
Designing a sparse array with reduced transmit/receive modules(TRMs)is vital for some applications where the antenna system’s size,weight,allowed operating space,and cost are limited.Sparse arrays exhibit distinct ar...Designing a sparse array with reduced transmit/receive modules(TRMs)is vital for some applications where the antenna system’s size,weight,allowed operating space,and cost are limited.Sparse arrays exhibit distinct architectures,roughly classified into three categories:Thinned arrays,nonuniformly spaced arrays,and clustered arrays.While numerous advanced synthesis methods have been presented for the three types of sparse arrays in recent years,a comprehensive review of the latest development in sparse array synthesis is lacking.This work aims to fill this gap by thoroughly summarizing these techniques.The study includes synthesis examples to facilitate a comparative analysis of different techniques in terms of both accuracy and efficiency.Thus,this review is intended to assist researchers and engineers in related fields,offering a clear understanding of the development and distinctions among sparse array synthesis techniques.展开更多
Systematic effort dedicated to the exploration of feasible ways how to permanently come up with even more space-efficient implementation of digital circuits based on conventional CMOS technology node may soon reach th...Systematic effort dedicated to the exploration of feasible ways how to permanently come up with even more space-efficient implementation of digital circuits based on conventional CMOS technology node may soon reach the ultimate point, which is mostly given by the constraints associated with physical scaling of fundamental electronic components. One of the possible ways of how to mitigate this problem can be recognized in deployment of multifunctional circuit elements. In addition, the polymorphic electronics paradigm, with its considerable independence on a parti- cular technology, opens a way how to fulfil this objective through the adoption of emerging semiconductor materials and advanced synthesis methods. In this paper, main attention is focused on the introduction of polymorphic operators (i.e. digital logic gates) that would allow to further increase the efficiency of multifunctional circuit synthesis techniques. Key aspect depicting the novelty of the proposed approach is primarily based on the intrinsic exploitation of components with ambi- polar conduction property. Finally, relevant models of the polymorphic operators are presented in conjunction with the experimental results.展开更多
Sampling synthesis is one of the most practical and widely used approaches among the various sound synthesis methods used for creating a realistic simulation of acoustic instruments. Using numerous high quality sound ...Sampling synthesis is one of the most practical and widely used approaches among the various sound synthesis methods used for creating a realistic simulation of acoustic instruments. Using numerous high quality sound samples it is possible to reproduce a sound of almost any musical instrument, including subtle variations caused by the registers of an instrument or through the use of different articulation techniques and dynamic levels. However, this method has some disadvantages. Firstly, with high fidelity reproduction systems, the repeatability of samples becomes quickly apparent for more experienced listeners. This is sometimes manually corrected by switching between several different samples of the same note. Secondly, it is standard approach to record and reproduce each note separately. It prevents samplers from reproducing natural note transitions, making fluent, connected articulations, such as legato, unnatural. Finally, samplers provide a very limited number of sound parameters to control. Therefore, it is difficult to introduce a set of purposeful fluctuations of selected parameters uniquely attributable to human performances. A synthesis system which addresses the aforementioned problems has been developed at the Academy of Music in Krakow (Poland) for a group of wind instruments as part of a symphony orchestra. The system is based on a large collection of non-standard samples. Samples contain short sequences of notes instead of single notes. In order to use them, a number of techniques have been implemented to allow the seamless connecting of recorded sequences and the control of note durations as well as tempo and dynamics envelopes. Decision-making algorithms and signal processing are applied to create melodic figures by choosing, modifying, and connecting fragments of samples, while keeping natural note transitions intact. The problem of mimicking human performances is addressed by implementing a set of performance rules. It allows to introduce context-dependent variations into the regular playback of the material contained in the musical notation to properly shape the expression of musical structures, similarly to that of live performances by musicians. This article presents the main modules of the modified sampling synthesis system designed by us as well as its general structure and principle of operation. The modules are responsible for performing musical score analyses, an automatic selection and connection of sound samples, and the application of performance rules.展开更多
LiMn2O4 spinel cathode materials were modified with 2 wt.%Li-M-PO4(M=Co,Ni,Mn) by polyol synthesis method.The phosphate surface-modified LiMn2O4 cathode materials were physically characterized by X-ray diffraction(...LiMn2O4 spinel cathode materials were modified with 2 wt.%Li-M-PO4(M=Co,Ni,Mn) by polyol synthesis method.The phosphate surface-modified LiMn2O4 cathode materials were physically characterized by X-ray diffraction(XRD),scanning electron microscopy(SEM) and energy dispersive X-ray spectroscopy(EDS).The charge-discharge test showed that the cycling and rate capacities of LiMn2O4 cathode materials were significantly enhanced by stabilizing the electrode surface with phosphate.展开更多
Three kinds of processes, high temperature solid state reaction, precipitation and solgel technique were used to synthsize spinel phase LiMn2O4. XRD, DTATG results show that phasepure spinel LiMn2O4 could be synthesiz...Three kinds of processes, high temperature solid state reaction, precipitation and solgel technique were used to synthsize spinel phase LiMn2O4. XRD, DTATG results show that phasepure spinel LiMn2O4 could be synthesized under the lowest calcined temperature by the solgel technique compared to the precipitation method and solid state reaction. BET, SEM and electrochemical measurements results demonstrate that the features of the powders affect directly the electrochemical capacities; large specific area and small homogeneous grain size are of advantage for the lithium ion insertion and extraction in the charge and discharge process.展开更多
Colloidal semiconductor nanocrystals have been proven to be promising candidates for applications in low‐cost and high‐performance photovoltaics,bioimaging,and photocatalysis due to their novel size‐and shape‐depe...Colloidal semiconductor nanocrystals have been proven to be promising candidates for applications in low‐cost and high‐performance photovoltaics,bioimaging,and photocatalysis due to their novel size‐and shape‐dependent properties.Among the colloidal systems,I‐III‐VI semiconductor nanocrystals(NCs)have drawn much attention in the past few decades.Compared to binary NCs,ternary I‐III‐VI NCs not only exhibit low toxicity,but also a high performance similar to that of binary NCs.In this review,we mainly focus on the synthesis,properties,and applications of I‐III‐VI NCs.We summarize the major synthesis methods,analyze their photophysical and electronic properties,and highlight some of the latest applications of I‐III‐VI NCs in solar cells,light‐emitting diodes,bioimaging,and photocatalysis.Finally,based on the information reviewed,we highlight the existing problems and challenges.展开更多
Calcium looping method has been considered as one of the efficient options to capture C02 in the combustion Ilue gas. CaO-based sorbent is the basis for application of calcium looping and should be subjected to the se...Calcium looping method has been considered as one of the efficient options to capture C02 in the combustion Ilue gas. CaO-based sorbent is the basis for application of calcium looping and should be subjected to the severe calcination condition so as to obtain the concentrated C02 stream. In this research, CaO/CaZrO3 sorbents were synthesized using the sol-gel combustion synthesis (SGCS) method with urea as fuel. The cyclic reaction performance of the synthesized sorbents was evaluated on a lab-scaled reactor system through calcination at 950 ℃ in a pure C02 atmosphere and carbonation at 650 ℃ in the 15% (by volume) C02. The mass ratio of CaO to CaZr03 as 8:2 (designated as CasZr2) was screened as the best option among all the synthesized CaO sorbents for its high CO2 capture capacity and carbonation conversion at the initial cycle. And then a gradual decay in the C02 capture capacity was observed at the following 10 successive cycles, but hereafter stabilized throughout the later cycles. Furthermore, structural evolution of the carbonated CasZr2 over the looping cycles was investigated. With increasing looping cycles, the pore peak and mean grain size of the carbonated CasZr2 sorbent shifted to the bigger direction but both the surface area (SA) ratio and surface fractal dimension Ds decreased. Finally, morphological transformation of the carbonated CasZr2 was observed. Agglomeration and edge rounding of the newly formed CaC03 grains were found as aggravated at the cyclic carbonation stage. As a result, carbonation of CasZr2 with C02 was observed only confined to the external active CaO by the fast formation of the CaC03 shell outside, which occluded the further carbonation of the unreacted CaO inside. Therefore, enough attention should be paid to the carbonation stage and more effective activation measures should be explored to ensure the unreacted active CaO fully carbonatPd river the extended Ioonin cycles.展开更多
The emerging two-dimensional MXene-derived quantum dots(MQDs)have garnered considerable research interest owing to their abundant active edge atoms,excellent electrical conductivity,and remarkable optical properties.C...The emerging two-dimensional MXene-derived quantum dots(MQDs)have garnered considerable research interest owing to their abundant active edge atoms,excellent electrical conductivity,and remarkable optical properties.Compared with their two-dimensional(2D)counterpart MXene,MQDs with forceful size and quantum confinement effects exhibit more unparalleled properties and have considerably contributed to the advanced photocatalysis,detection,energy storage,and biomedicine fields.This critical review summarizes the fundamental properties of MQDs in terms of structure,electricity,and optics.The mechanism,characteristics,and comparisons of two typical synthesis strategies(traditional chemical method and novel fluorine-free or chemical-free method)are also presented.Furthermore,the similarities and differences between MQDs and 2D MXenes are introduced in terms of their functional groups,light absorption capacity,energy band structure,and other properties.Moreover,recent advances in the applications of MQD-based materials for energy conversion and storage(ECS)are discussed,including photocatalysis,batteries,and supercapacitors.Finally,current challenges and future opportunities for advancing MQD-based materials in the promising ECS field are presented.展开更多
Polyaniline doped with heteropolyacid was synthesized using solid-state synthesis method. XRD pattern showed that polyaniline molecule has highly ordered arrangement. Fluorescence property of the polyaniline materia...Polyaniline doped with heteropolyacid was synthesized using solid-state synthesis method. XRD pattern showed that polyaniline molecule has highly ordered arrangement. Fluorescence property of the polyaniline materials was found.展开更多
A convenient method for synthesis of tetragonal FeS using iron powder as iron source, is reported. Nanocrystalline tetragonal FeS samples were successfully synthesized by reacting metallic iron powder with sodium sulf...A convenient method for synthesis of tetragonal FeS using iron powder as iron source, is reported. Nanocrystalline tetragonal FeS samples were successfully synthesized by reacting metallic iron powder with sodium sulfide in acetate buffer solution. The obtained sample is single-phase tetragonal FeS with lattice parameters a = 0.3767 nm and c = 0.5037 nm, as revealed by X-ray diffraction. The sample consists of fiat nanosheets with lateral dimensions from 20 nm up to 200 nm and average thickness of about 20 nm. We found that tetragonal FeS is a fairly good conductor from the electrical resistivity measurement on a pellet of the nanosheets. The temperature dependence of conductivity of the pellet was well fitted using an empirical equation wherein the effect of different grain boundaries was taken into consideration. This study provides a convenient, economic way to synthesize tetragonal FeS in a large scale and reports the first electrical conductivity data for tetragonal FeS down to liquid helium temperature.展开更多
A method for the conversion of α-acetamido-β-substituted phenyl acrylic acid (αtβSPAA)into substituted phenyl lactic acid(SPLA)is described and an improved Clemmensen reduction reagent is used.
基金supported by Basic Frontier Scientific Research of the Chinese Academy of Sciences(ZDBS-LY-JSC041)the National Natural Science Foundation of China(22178348)+1 种基金the open research fund of the State Key Laboratory of Mesoscience and Engineering(MESO-23-D06)the Youth Innovation Promotion Association CAS(292021000085)。
文摘Titanium monocarbide(TiC),which is the most stable titanium-based carbide,has attracted considerable interest in the fields of energy,catalysis,and structural materials due to its excellent properties.Synthesis of high-quality TiC powders with low cost and high efficiency is crucial for industrial applications;however major challenges face its realization.Herein,the methods for synthesizing TiC powders based on a reaction system are reviewed.This analysis is focused on the underlying mechanisms by which synthesis methods affect the quality of powders.Notably,strategies for improving the synthesis of highquality powders are analyzed from the perspective of enhancing heat and mass transfer processes.Furthermore,the critical issues,challenges,and development trends of the synthesis technology and application of high-quality TiC powder are discussed.
文摘With the recent advancement in nanotechnology,nanoparticles(NPs)offer an ample variety of smart functions than conventional materials in various aspects.As compared to larger particles,NPs possess unique characteristics and excellent abilities,such as low toxicity,chemical stability,surface functionality,and biocompatibility.These advantageous properties allow them to be widely utilized in many applications,including biomedical applications,energy applications,IT applications,and industrial applications.In order to fulfill the increasing demands of NP applications,existing NP synthesis methods need to be improved based on the requirements of different applications to further their usage.A comprehensive understanding of the relationships between synthesis parameters and properties of NPs can help us better fine-tune them with designed properties and minimal toxicity.This review paper will discuss the commonly used synthesis methods of functionalized NPs,as well as future directions and challenges to develop various synthesis methods further.
基金This work is supported by the Fundamental Research Funds of China Jiliang University and the Zhejiang Provincial Natural Science Foundation of China(No.LQ22E060003).
文摘This study demonstrated the impacts of the synthesis methods on the textural structures,chemical properties,and Hg^(0)capture capability of the MnO_(x)system.Compared with the samples synthesized using the precipitation(PR)and hydrothermal(HT)methods,the adsorbent prepared via the sol-gel(SG)technique gave the best performance.At 150℃,ca.90%Hg^(0)removal efficiency was reached after 7.5 h for MnO_(x)prepared by the SG method,ca.40%higher than that of the other two methods.The specific surface area of the adsorbent synthesized via the SG technique(23 m^(2)/g)was almost double that of the adsorbent prepared by the HT method(12 m^(2)/g)and three times that of the one prepared by the PR method(7 m^(2)/g).The presence of plentiful acid sites from the SG method facilitated the physisorption of Hg^(0),making more Hg^(0)available to be oxidized to HgO by the redox sites and thus giving the adsorbent prepared by the SG method the highest Hg^(0)removal efficiency.The strong oxidative ability accelerated the oxidation of the physically adsorbed Hg^(0)to HgO,which explained the higher Hg^(0)removal efficiency of the sample prepared using the HT method than that of the one synthesized by the PR technique.During the whole Hg^(0)removal cycles,chemisorption dominated,with the initial adsorption stage and the external mass-transfer process playing important roles.
基金supported by the Grant from the China Huadian Science and Technology Institute(CHDI.KJ-20)the National High-Tech Research and Development Program of China(863,2011AA03A405)
文摘The effect of synthesis methods on the activity of V/Ce/WTi catalysts was investigated for the selective catalytic reduction(SCR) of NO_x by NH_3. V/Ce/WTi-DP(deposition precipitation) catalyst showed excellent NH_3-SCR performance, especially the better medium-temperature activity and the less N_2O formation than V/Ce/WTi-IMP(impregnation). These catalysts were characterized by X-ray diffraction(XRD), Brumauer-Emmett-Teller(BET), X-ray photoelectron spectroscopy(XPS), temperature-programmed reduction(H_2-TPR), and in situ DRIFTS techniques. The XPS and H_2-TPR results revealed that V/Ce/WTi-DP exhibited more surface Ce species, higher level of Oα and higher reducibility of Ce species. Reflected by in situ DRIFTS results, the deposition precipitation method(DP) contributed to a greater amount of weakly adsorbed NO_2, monodentate nitrate and NH_3 species with better reactive activity. Meanwhile, the cis-N_2O_2^(2-) species, an intermediate for N_2O formation, was very limited. As a result, these advantages brought about the superior SCR activity and N_2 selectivity for V/Ce/WTi-DP.
基金National Key Research and Development Program of China(No.2020YFE0205300)Heilongjiang Provincial Natural Science Foundation of China(No.YQ2022E024)+1 种基金Chongqing Natural Science Foundation of China(No.cstc2021jcyj-msxmX1002)Fundamental Research Funds for the Central Universities(No.AUGA5710051221).
文摘High-entropy alloy nanoparticles(HEA NPs)containing four or more elements possess several advantages over traditional alloy nanoparticles(NPs),such as higher strength,greater thermal stability,enhanced ox-idation resistance,stronger catalytic activity,and greater flexibility in adjusting element composition and composition ratio.However,the development of HEA NPs has been limited by preparation difficulties caused by the challenge of achieving complete miscibility between multiple-component elements and the unique high-entropy states.In this review,we provide a comprehensive summary of recent break-throughs in synthesizing and fabricating HEA NPs.We describe the experimental procedures and princi-ples of various synthesis methods,including furnace pyrolysis,carbothermal shock(CTS)method,pulse laser,solvothermal method,microwave heating,hydrogen spillover-driven,sputtering deposition,anneal-ing on mesoporous materials,arc discharge methods and using liquid metal.Additionally,we delve into recent improvements made to some of these methods or novel NPs synthesized using them.Finally,we review the current applications of HEA NPs and provide insights into potential applications of this rapidly emerging research field.
基金the support of the Khalifa University internal funding CIRA-2021-071(8474000416),Khalifa University,UAEthe financial support from the Science batch of 1976-1980 of the University of Peradeniya,Sri Lanka。
文摘Wastewater contamination by heavy metals and synthetic dyes presents a significant environmental challenge,necessitating effective and sustainable separation techniques.This review article provides a detailed examination of magnesium oxide(MgO)nanoparticles as an innovative nanoadsorbent for wastewater treatment,with a specific focus on heavy metal and dye removal.The review comprehensively explores various aspects of MgO nanoparticles,including their structural characteristics and synthesis techniques.The article delves into the morphology and crystallographic arrangement of MgO nanoparticles,offering insights into their structural attributes.Given the complexity of adsorption processes,the review identifies and analyzes parameters influencing the adsorption efficiency of MgO nanoparticles,such as temperature,pH,contact time,initial concentration,and co-existing ions.The interplay between these parameters and the adsorption capability of MgO nanoparticles emphasizes the importance of optimizing operational conditions.Furthermore,the review assesses various synthesis methods for MgO nanoparticles,including sol-gel,hydrothermal,precipitation,green synthesis,solvothermal,and template-assisted techniques.It discusses the advantages,limitations,and resulting nanoparticle characteristics of each method,enabling readers to grasp the implications of synthesis processes on adsorption efficiency.This comprehensive review consolidates current insights into the effectiveness of MgO nanoparticles as a potent nanoadsorbent for removing heavy metals and dyes from wastewater covering a wide spectrum of aspects related to MgO nanoparticles.Moreover,there is a need to investigate the use of MgO in the treatment of actual wastewater or river water,in order to leverage its cost-effectiveness and high efficiency for practical water treatment applications in real-time.
文摘The component synthesis active vibration suppression method (CSVS) can be applied to suppress the vibration of flexible systems. By this method, several same or similar time-varying components are arranged according to certain rules along the time axis. The synthesized command can suppress the arbitrary unwanted vibration harmonic while achieving the desired rigid body motion. The number of the components increases rapidly when the number of harmonic vibration is growing. In this article, the CSVS based on zero-placement technique is used to construct the synthesized command to suppress the multi-harmonics simultaneously in the discrete domain. The nature of zero-placement method is to put enough zeros to cancel system poles at necessary points. The designed synthesized command has equal time intervals between each component and which is much easier to be implemented. Using this method, the number of components increases linearly with the increasing of the number of being suppressed harmonics. For the spacecraft with flexible appendages, CSVS based on zero-placement is used to design the time optimal large angle maneuver control strategy. Simulations have verified the validity and superiority of the proposed approach.
基金the National Natural Science Foundation of China(51973157,51673148 and 51678411)the Special Grade of the Financial Support from the China Postdoctoral Science Foundation(2020 T130469)+1 种基金the China Postdoctoral Science Foundation Grant(2019 M651047)the Science and Technology Plans of Tianjin(No.17PTSYJC00040 and18PTSYJC00180)for their financial support。
文摘Lithium-ion(Li-ion) battery and lithium-sulfur(Li-S) battery have attracted significant attention as promising components for large-scale energy storage because of high theoretical capacity of Li,excellent energy density or environmental friendness for two kinds of batteries.However,there still exist some respective obstacles for commercial applications,such as limited theoretical capacity,high cost and low conductivity of Li-ion cells or shuttle effect of lithium polysulfides of Li-S cells.As typical twodimensional materials,layered double hydroxides(LDHs) exhibit excellent potential in the field of energy storage due to facile tunability of composition,structure and morphology as well as convenient composite and strong catalytic properties.Consequently,various LDHs toward novel separators or interlayers,cathodes,anodes,and interesting catalytic templates are researched to resolve these challenges.In this review,the recent progress for LDHs applied in Li-ion batteries and Li-S batteries including the synthesis methods,designs and applications is presented and reviewed.Meanwhile,the existing challenges and future perspectives associated with material designs and practical applications of LDHs for these two classes of cells are discussed.WeWe hope that the review can attract more attention and inspire more profound researches toward the LDH-based electrochemical materials for energy storage.
基金Supported by National Natural Science Foundation of China (Grant No.51975007)。
文摘Efficiency of calculating a dynamic response is an important point of the compliant mechanism for posture adjustment.Dynamic modeling with low orders of a 2R1T compliant parallel mechanism is studied in the paper.The mechanism with two out-of-plane rotational and one lifting degrees of freedom(DoFs)plays an important role in posture adjustment.Based on elastic beam theory,the stiffness matrix and mass matrix of the beam element are established where the moment of inertia is considered.To improve solving efficiency,a dynamic model with low orders of the mechanism is established based on a modified modal synthesis method.Firstly,each branch of the RPR type mechanism is divided into a substructure.Subsequently,a set of hypothetical modes of each substructure is obtained based on the C-B method.Finally,dynamic equation of the whole mechanism is established by the substructure assembly.A dynamic experiment is conducted to verify the dynamic characteristics of the compliant mechanism.
基金supported by the National Natural Science Foundation of China under Grant No.U2341208.
文摘Designing a sparse array with reduced transmit/receive modules(TRMs)is vital for some applications where the antenna system’s size,weight,allowed operating space,and cost are limited.Sparse arrays exhibit distinct architectures,roughly classified into three categories:Thinned arrays,nonuniformly spaced arrays,and clustered arrays.While numerous advanced synthesis methods have been presented for the three types of sparse arrays in recent years,a comprehensive review of the latest development in sparse array synthesis is lacking.This work aims to fill this gap by thoroughly summarizing these techniques.The study includes synthesis examples to facilitate a comparative analysis of different techniques in terms of both accuracy and efficiency.Thus,this review is intended to assist researchers and engineers in related fields,offering a clear understanding of the development and distinctions among sparse array synthesis techniques.
文摘Systematic effort dedicated to the exploration of feasible ways how to permanently come up with even more space-efficient implementation of digital circuits based on conventional CMOS technology node may soon reach the ultimate point, which is mostly given by the constraints associated with physical scaling of fundamental electronic components. One of the possible ways of how to mitigate this problem can be recognized in deployment of multifunctional circuit elements. In addition, the polymorphic electronics paradigm, with its considerable independence on a parti- cular technology, opens a way how to fulfil this objective through the adoption of emerging semiconductor materials and advanced synthesis methods. In this paper, main attention is focused on the introduction of polymorphic operators (i.e. digital logic gates) that would allow to further increase the efficiency of multifunctional circuit synthesis techniques. Key aspect depicting the novelty of the proposed approach is primarily based on the intrinsic exploitation of components with ambi- polar conduction property. Finally, relevant models of the polymorphic operators are presented in conjunction with the experimental results.
文摘Sampling synthesis is one of the most practical and widely used approaches among the various sound synthesis methods used for creating a realistic simulation of acoustic instruments. Using numerous high quality sound samples it is possible to reproduce a sound of almost any musical instrument, including subtle variations caused by the registers of an instrument or through the use of different articulation techniques and dynamic levels. However, this method has some disadvantages. Firstly, with high fidelity reproduction systems, the repeatability of samples becomes quickly apparent for more experienced listeners. This is sometimes manually corrected by switching between several different samples of the same note. Secondly, it is standard approach to record and reproduce each note separately. It prevents samplers from reproducing natural note transitions, making fluent, connected articulations, such as legato, unnatural. Finally, samplers provide a very limited number of sound parameters to control. Therefore, it is difficult to introduce a set of purposeful fluctuations of selected parameters uniquely attributable to human performances. A synthesis system which addresses the aforementioned problems has been developed at the Academy of Music in Krakow (Poland) for a group of wind instruments as part of a symphony orchestra. The system is based on a large collection of non-standard samples. Samples contain short sequences of notes instead of single notes. In order to use them, a number of techniques have been implemented to allow the seamless connecting of recorded sequences and the control of note durations as well as tempo and dynamics envelopes. Decision-making algorithms and signal processing are applied to create melodic figures by choosing, modifying, and connecting fragments of samples, while keeping natural note transitions intact. The problem of mimicking human performances is addressed by implementing a set of performance rules. It allows to introduce context-dependent variations into the regular playback of the material contained in the musical notation to properly shape the expression of musical structures, similarly to that of live performances by musicians. This article presents the main modules of the modified sampling synthesis system designed by us as well as its general structure and principle of operation. The modules are responsible for performing musical score analyses, an automatic selection and connection of sound samples, and the application of performance rules.
基金financially supported by the National High-Tech Research and Development(863) Program of China(No.2006AA11A160)the National Natural Science Foundation of China(No.50604018)
文摘LiMn2O4 spinel cathode materials were modified with 2 wt.%Li-M-PO4(M=Co,Ni,Mn) by polyol synthesis method.The phosphate surface-modified LiMn2O4 cathode materials were physically characterized by X-ray diffraction(XRD),scanning electron microscopy(SEM) and energy dispersive X-ray spectroscopy(EDS).The charge-discharge test showed that the cycling and rate capacities of LiMn2O4 cathode materials were significantly enhanced by stabilizing the electrode surface with phosphate.
文摘Three kinds of processes, high temperature solid state reaction, precipitation and solgel technique were used to synthsize spinel phase LiMn2O4. XRD, DTATG results show that phasepure spinel LiMn2O4 could be synthesized under the lowest calcined temperature by the solgel technique compared to the precipitation method and solid state reaction. BET, SEM and electrochemical measurements results demonstrate that the features of the powders affect directly the electrochemical capacities; large specific area and small homogeneous grain size are of advantage for the lithium ion insertion and extraction in the charge and discharge process.
文摘Colloidal semiconductor nanocrystals have been proven to be promising candidates for applications in low‐cost and high‐performance photovoltaics,bioimaging,and photocatalysis due to their novel size‐and shape‐dependent properties.Among the colloidal systems,I‐III‐VI semiconductor nanocrystals(NCs)have drawn much attention in the past few decades.Compared to binary NCs,ternary I‐III‐VI NCs not only exhibit low toxicity,but also a high performance similar to that of binary NCs.In this review,we mainly focus on the synthesis,properties,and applications of I‐III‐VI NCs.We summarize the major synthesis methods,analyze their photophysical and electronic properties,and highlight some of the latest applications of I‐III‐VI NCs in solar cells,light‐emitting diodes,bioimaging,and photocatalysis.Finally,based on the information reviewed,we highlight the existing problems and challenges.
基金Supported by the National Natural Science Foundation of China(51276210,50906030,31301586)the Partial Financial Grant of North China University of Water Resources and Electric Power(201012)the National Basic Research Program of China(2011CB707301)
文摘Calcium looping method has been considered as one of the efficient options to capture C02 in the combustion Ilue gas. CaO-based sorbent is the basis for application of calcium looping and should be subjected to the severe calcination condition so as to obtain the concentrated C02 stream. In this research, CaO/CaZrO3 sorbents were synthesized using the sol-gel combustion synthesis (SGCS) method with urea as fuel. The cyclic reaction performance of the synthesized sorbents was evaluated on a lab-scaled reactor system through calcination at 950 ℃ in a pure C02 atmosphere and carbonation at 650 ℃ in the 15% (by volume) C02. The mass ratio of CaO to CaZr03 as 8:2 (designated as CasZr2) was screened as the best option among all the synthesized CaO sorbents for its high CO2 capture capacity and carbonation conversion at the initial cycle. And then a gradual decay in the C02 capture capacity was observed at the following 10 successive cycles, but hereafter stabilized throughout the later cycles. Furthermore, structural evolution of the carbonated CasZr2 over the looping cycles was investigated. With increasing looping cycles, the pore peak and mean grain size of the carbonated CasZr2 sorbent shifted to the bigger direction but both the surface area (SA) ratio and surface fractal dimension Ds decreased. Finally, morphological transformation of the carbonated CasZr2 was observed. Agglomeration and edge rounding of the newly formed CaC03 grains were found as aggravated at the cyclic carbonation stage. As a result, carbonation of CasZr2 with C02 was observed only confined to the external active CaO by the fast formation of the CaC03 shell outside, which occluded the further carbonation of the unreacted CaO inside. Therefore, enough attention should be paid to the carbonation stage and more effective activation measures should be explored to ensure the unreacted active CaO fully carbonatPd river the extended Ioonin cycles.
文摘The emerging two-dimensional MXene-derived quantum dots(MQDs)have garnered considerable research interest owing to their abundant active edge atoms,excellent electrical conductivity,and remarkable optical properties.Compared with their two-dimensional(2D)counterpart MXene,MQDs with forceful size and quantum confinement effects exhibit more unparalleled properties and have considerably contributed to the advanced photocatalysis,detection,energy storage,and biomedicine fields.This critical review summarizes the fundamental properties of MQDs in terms of structure,electricity,and optics.The mechanism,characteristics,and comparisons of two typical synthesis strategies(traditional chemical method and novel fluorine-free or chemical-free method)are also presented.Furthermore,the similarities and differences between MQDs and 2D MXenes are introduced in terms of their functional groups,light absorption capacity,energy band structure,and other properties.Moreover,recent advances in the applications of MQD-based materials for energy conversion and storage(ECS)are discussed,including photocatalysis,batteries,and supercapacitors.Finally,current challenges and future opportunities for advancing MQD-based materials in the promising ECS field are presented.
文摘Polyaniline doped with heteropolyacid was synthesized using solid-state synthesis method. XRD pattern showed that polyaniline molecule has highly ordered arrangement. Fluorescence property of the polyaniline materials was found.
基金Project supported by the National Natural Science Foundation of China(Grant No.21271183)the National Basic Research Program of China(Grant Nos.2011CBA00112 and 2011CB808202)
文摘A convenient method for synthesis of tetragonal FeS using iron powder as iron source, is reported. Nanocrystalline tetragonal FeS samples were successfully synthesized by reacting metallic iron powder with sodium sulfide in acetate buffer solution. The obtained sample is single-phase tetragonal FeS with lattice parameters a = 0.3767 nm and c = 0.5037 nm, as revealed by X-ray diffraction. The sample consists of fiat nanosheets with lateral dimensions from 20 nm up to 200 nm and average thickness of about 20 nm. We found that tetragonal FeS is a fairly good conductor from the electrical resistivity measurement on a pellet of the nanosheets. The temperature dependence of conductivity of the pellet was well fitted using an empirical equation wherein the effect of different grain boundaries was taken into consideration. This study provides a convenient, economic way to synthesize tetragonal FeS in a large scale and reports the first electrical conductivity data for tetragonal FeS down to liquid helium temperature.
文摘A method for the conversion of α-acetamido-β-substituted phenyl acrylic acid (αtβSPAA)into substituted phenyl lactic acid(SPLA)is described and an improved Clemmensen reduction reagent is used.