It was focused on the applications and developments of microwave hydrothermal synthesis piezoelectric ceramic powder. The microwave hydrothermal vessel was designed and manufactured. The microwave hydrothermal synthes...It was focused on the applications and developments of microwave hydrothermal synthesis piezoelectric ceramic powder. The microwave hydrothermal vessel was designed and manufactured. The microwave hydrothermal synthesis system was established and the PZT piezoelectric ceramic powder was synthesized. XRD and TEM have been used to characterize the products in detail. The diameter of the PZT powder particle is from 40 to 60 nm.展开更多
Rare-earth stannate(Ln_2Sn_2O_7(Ln = Y, La–Lu)) nanocrystals with an average diameter of 50 nm were prepared through a facile microwave hydrothermal method at 200°C within 60 min. The products were well char...Rare-earth stannate(Ln_2Sn_2O_7(Ln = Y, La–Lu)) nanocrystals with an average diameter of 50 nm were prepared through a facile microwave hydrothermal method at 200°C within 60 min. The products were well characterized. The effect of reaction parameters such as temperature, reaction time, p H value, and alkali source on the preparation was investigated. The results revealed that the p H value plays an important role in the formation process of gadolinium stannate(Gd_2Sn_2O_7) nanoparticles. By contrast, the alkali source had no effect on the phase composition or morphology of the final product. Uniform and sphere-like nanoparticles with an average size of approximately 50 nm were obtained at the p H value of 11.5. A possible formation mechanism was briefly proposed. Gd_2Sn_2O_7:Eu^(3+) nanoparticles displayed strong orange-red emission. Magnetic measurements revealed that Gd_2Sn_2O_7 nanoparticles were paramagnetic. The other rare-earth stannate Ln_2Sn_2O_7(Ln = Y, La–Lu) nanocrystals were prepared by similar approaches.展开更多
In this paper,we report a novel application of microwave radiation for the synthesis of zeolite NaA in a fraction of the time required for conventional synthetic method under very mild condition.The pure product was o...In this paper,we report a novel application of microwave radiation for the synthesis of zeolite NaA in a fraction of the time required for conventional synthetic method under very mild condition.The pure product was obtained under the condition of microwave radiation in 10-20 minutes.展开更多
This study employed microwave-assisted hydrothermal method to synthesize Ti-MCM-41,which are mesoporous materials with a high surface area and excellent photocatalytic ability. Fourier transform infrared spectroscopy...This study employed microwave-assisted hydrothermal method to synthesize Ti-MCM-41,which are mesoporous materials with a high surface area and excellent photocatalytic ability. Fourier transform infrared spectroscopy(FTIR), X-ray diffraction(XRD), X-ray photoelectron spectroscopy(XPS), transmission electron microscopy(TEM), and ultraviolet–visible spectroscopy(UV–Vis) were employed. The XRD findings showed that Ti-MCM-41 exhibited a peak at 2θ of 2.2°, which was attributed to the hexagonal MCM-41 structure. The BET(Brunauer–Emmett–Teller) results agreed with the TEM findings that Ti-MCM-41 has a pore size of about 3–5 nm and a high surface area of 883 m-2/g. FTIR results illustrated the existence of Si–O–Si and Si–O–Ti bonds in Ti-MCM-41. The appearance of Ti2 p peaks in the XPS results confirmed the FTIR findings that the Ti was successfully doped into the MCM-41 structure. Zeta(ζ)-potential results indicated that the iso-electric point(IEP) of Ti-MCM-41 was at about pH 3.02. In this study, the photocatalytic degradation of oxytetracycline(OTC) at different pH was investigated under Hg lamp irradiation(wavelength 365 nm). The rate constant(K′obs) for OTC degradation was 0.012 min-1at pH 3. Furthermore, TOC(total organic carbon) and high resolution LC–MS(liquid chromatography–mass spectrometry) analyses were conducted to elucidate the possible intermediate products and degradation pathway for OTC. The TOC removal efficiency of OTC degradation was 87.0%, 74.4% and 50.9% at pH 3, 7 and 10, respectively. LC–MS analysis results showed that the degradation products from OTC resulted from the removal of functional groups from the OTC ring.展开更多
With the fabrication of high-performance thermoelectric(TE)materials,developments are being made in enhanc-ing the figure of merit,zT,of TE materials.Liquid-like binary copper selenide(Cu_(2) Se)chalcogenides recently...With the fabrication of high-performance thermoelectric(TE)materials,developments are being made in enhanc-ing the figure of merit,zT,of TE materials.Liquid-like binary copper selenide(Cu_(2) Se)chalcogenides recently gained significant recognition because of their anomalous but fascinating electrical and thermal transport perfor-mances.In this study,a facile synthesis technique was adopted in fabricating Cu_(2) Se nanoparticles using a rapid microwave-assisted hydrothermal route at different reaction times.The results were compared with those of the Cu_(2) Se solid-state(SS)sample synthesized using the traditional melting and annealing technique.X-ray diffrac-tion patterns revealed successful synthesis of nanoparticles and a phase transition from orthorhombic𝛼-phase and cubic𝛽-phase to a single orthorhombic structure after hot-pressing.Scanning electron microscopic images revealed that although the grain sizes of the nanoparticle(NP)bulk samples increased with the reaction time of the microwave hydrothermal process,the grain sizes were significantly smaller than that of the SS sample.Additionally,NP bulk samples exhibited plenty of nano-grains and pores that are absent in the SS sample.The size and distribution of the grains and pores were measured to study their effects on the transport of carriers and phonons.The NP30 sample exhibited the highest power factor of 983.3μW K−2 m at 673 K among the NP samples,exhibiting intermediate values of resistivity and Seebeck coefficient that are close to those of the SS sample.Moreover,the NP samples exhibited appreciably lower thermal conductivity than the SS sample that is attributed to strengthened phonon scattering.The minimum thermal conductivity of the NP05 sample,0.78 WK−1 m−1 at 348 K,is 1.7 times lower than that of the SS sample.Finally,a maximum zT of 0.56 at 673 K,being approximately 1.3 times higher than that of the SS sample owing to the optimized thermal conductivity,was achieved for the NP30 sample.This value is comparable to or higher than that reported for Cu_(2) Se synthesized using the traditional SS method.Investigations revealed that the proposed microwave hydrothermal synthesis technique is a facile,rapid,and reliable method that results in Cu_(2) Se alloys with excellent TE performance.展开更多
文摘It was focused on the applications and developments of microwave hydrothermal synthesis piezoelectric ceramic powder. The microwave hydrothermal vessel was designed and manufactured. The microwave hydrothermal synthesis system was established and the PZT piezoelectric ceramic powder was synthesized. XRD and TEM have been used to characterize the products in detail. The diameter of the PZT powder particle is from 40 to 60 nm.
基金financially supported by the National Natural Science Foundation of China (Nos. 21641008 and 91622105)the Jiangxi Provincial Department of Science and Technology (Nos. 20161BAB203083 and 20151BDH80049)
文摘Rare-earth stannate(Ln_2Sn_2O_7(Ln = Y, La–Lu)) nanocrystals with an average diameter of 50 nm were prepared through a facile microwave hydrothermal method at 200°C within 60 min. The products were well characterized. The effect of reaction parameters such as temperature, reaction time, p H value, and alkali source on the preparation was investigated. The results revealed that the p H value plays an important role in the formation process of gadolinium stannate(Gd_2Sn_2O_7) nanoparticles. By contrast, the alkali source had no effect on the phase composition or morphology of the final product. Uniform and sphere-like nanoparticles with an average size of approximately 50 nm were obtained at the p H value of 11.5. A possible formation mechanism was briefly proposed. Gd_2Sn_2O_7:Eu^(3+) nanoparticles displayed strong orange-red emission. Magnetic measurements revealed that Gd_2Sn_2O_7 nanoparticles were paramagnetic. The other rare-earth stannate Ln_2Sn_2O_7(Ln = Y, La–Lu) nanocrystals were prepared by similar approaches.
文摘In this paper,we report a novel application of microwave radiation for the synthesis of zeolite NaA in a fraction of the time required for conventional synthetic method under very mild condition.The pure product was obtained under the condition of microwave radiation in 10-20 minutes.
基金financial support provided by the Tunghai University Global Research and Education on Environment and Society (No. 103GREEnS 005-2)
文摘This study employed microwave-assisted hydrothermal method to synthesize Ti-MCM-41,which are mesoporous materials with a high surface area and excellent photocatalytic ability. Fourier transform infrared spectroscopy(FTIR), X-ray diffraction(XRD), X-ray photoelectron spectroscopy(XPS), transmission electron microscopy(TEM), and ultraviolet–visible spectroscopy(UV–Vis) were employed. The XRD findings showed that Ti-MCM-41 exhibited a peak at 2θ of 2.2°, which was attributed to the hexagonal MCM-41 structure. The BET(Brunauer–Emmett–Teller) results agreed with the TEM findings that Ti-MCM-41 has a pore size of about 3–5 nm and a high surface area of 883 m-2/g. FTIR results illustrated the existence of Si–O–Si and Si–O–Ti bonds in Ti-MCM-41. The appearance of Ti2 p peaks in the XPS results confirmed the FTIR findings that the Ti was successfully doped into the MCM-41 structure. Zeta(ζ)-potential results indicated that the iso-electric point(IEP) of Ti-MCM-41 was at about pH 3.02. In this study, the photocatalytic degradation of oxytetracycline(OTC) at different pH was investigated under Hg lamp irradiation(wavelength 365 nm). The rate constant(K′obs) for OTC degradation was 0.012 min-1at pH 3. Furthermore, TOC(total organic carbon) and high resolution LC–MS(liquid chromatography–mass spectrometry) analyses were conducted to elucidate the possible intermediate products and degradation pathway for OTC. The TOC removal efficiency of OTC degradation was 87.0%, 74.4% and 50.9% at pH 3, 7 and 10, respectively. LC–MS analysis results showed that the degradation products from OTC resulted from the removal of functional groups from the OTC ring.
基金supported financially by the National Key R&D Pro-gram of China(2017YFE0195200)the Natural Science Fund of China(under grant nos.51871134,52171216,and 52111530034)+1 种基金the Science Fund of Shandong Province(under grant no.ZR2019MEM007)the Qilu Young Scholar Program of Shandong University.
文摘With the fabrication of high-performance thermoelectric(TE)materials,developments are being made in enhanc-ing the figure of merit,zT,of TE materials.Liquid-like binary copper selenide(Cu_(2) Se)chalcogenides recently gained significant recognition because of their anomalous but fascinating electrical and thermal transport perfor-mances.In this study,a facile synthesis technique was adopted in fabricating Cu_(2) Se nanoparticles using a rapid microwave-assisted hydrothermal route at different reaction times.The results were compared with those of the Cu_(2) Se solid-state(SS)sample synthesized using the traditional melting and annealing technique.X-ray diffrac-tion patterns revealed successful synthesis of nanoparticles and a phase transition from orthorhombic𝛼-phase and cubic𝛽-phase to a single orthorhombic structure after hot-pressing.Scanning electron microscopic images revealed that although the grain sizes of the nanoparticle(NP)bulk samples increased with the reaction time of the microwave hydrothermal process,the grain sizes were significantly smaller than that of the SS sample.Additionally,NP bulk samples exhibited plenty of nano-grains and pores that are absent in the SS sample.The size and distribution of the grains and pores were measured to study their effects on the transport of carriers and phonons.The NP30 sample exhibited the highest power factor of 983.3μW K−2 m at 673 K among the NP samples,exhibiting intermediate values of resistivity and Seebeck coefficient that are close to those of the SS sample.Moreover,the NP samples exhibited appreciably lower thermal conductivity than the SS sample that is attributed to strengthened phonon scattering.The minimum thermal conductivity of the NP05 sample,0.78 WK−1 m−1 at 348 K,is 1.7 times lower than that of the SS sample.Finally,a maximum zT of 0.56 at 673 K,being approximately 1.3 times higher than that of the SS sample owing to the optimized thermal conductivity,was achieved for the NP30 sample.This value is comparable to or higher than that reported for Cu_(2) Se synthesized using the traditional SS method.Investigations revealed that the proposed microwave hydrothermal synthesis technique is a facile,rapid,and reliable method that results in Cu_(2) Se alloys with excellent TE performance.