A novel cerium(Ⅲ) salt of Dawson type tungstophosphoric acid(Ce2P2W18O62·16H2O) was prepared by doping cerous nitrate in H6P2W18O62·13H2O powder and characterized by thermogravimetry and differential therma...A novel cerium(Ⅲ) salt of Dawson type tungstophosphoric acid(Ce2P2W18O62·16H2O) was prepared by doping cerous nitrate in H6P2W18O62·13H2O powder and characterized by thermogravimetry and differential thermal analyses(TG/DTA),Fourier transform infrared spectroscopy(FT-IR),X-ray powder diffraction(XRD),pyridine infrared spectroscopy(Py-IR) and scanning electron microscopy(SEM).Its catalytic activity was evaluated by the probe reaction of synthesis of n-butyl acetate with acetic acid and n-butanol.The effects of various parameters such as molar ratio of n-butanol to acetic acid,reaction temperature,reaction time,and catalyst amount have been studied by single factor experiment.The results show that Ce2P2W18O62·16H2O behaved as an excellent heterogeneous catalyst in the synthesis of n-butyl acetate.The optimum synthetic conditions were determined as follows︰molar ratio of n-butanol to acetic acid at 2.0︰1.0,mass of the catalyst being 1.44% of the total reaction mixture,reaction temperature of 120 ℃ and reaction time of 150 min.Under above conditions,the conversion of acetic acid was above 97.8%.The selectivity of n-butyl acetate based on acetic acid was,in all cases,nearly 100%.The catalysts could be recycled and still exhibited high catalytic activity with 90.4% conversion after five cycles of reaction.It was found by means of TG-DTA and Py-IR that the catalyst deactivation was due to the adsorption of a complex of by-product on the active sites on catalysts surface or the catalyst loss in its separation from the products.Compared with using sulfuric acid as catalyst,the present procedure with Ce2P2W18O62·16H2O is a green productive technology due to simple process,higher yield,catalyst recycling and no corrosion for the production facilities.展开更多
Introduction Microwave irradiation has been very widely used in heating, cooking and brewing. Several papers which describe the use of domestic microwave ovens to perform rapid organic synthesis in solution have been ...Introduction Microwave irradiation has been very widely used in heating, cooking and brewing. Several papers which describe the use of domestic microwave ovens to perform rapid organic synthesis in solution have been published. The high heating efficiency gives rise to remarkable rate of reaction and dramatic reduction of reaction time. Nevertheless, its application seems to be limited to these procedures because of展开更多
A novel Ce-Y/SBA-15 catalyst was prepared by modifying HY/SBA-15 microporous-mesoporous composite molecular sieve with cerium using the impregnation method. The characterization results from scanning electron microsco...A novel Ce-Y/SBA-15 catalyst was prepared by modifying HY/SBA-15 microporous-mesoporous composite molecular sieve with cerium using the impregnation method. The characterization results from scanning electron microscopy/energy dispersive X-ray dispersive spectroscopy(SEM/EDS), transmission electron microscopy(TEM), and X-ray fluorescence(XRF) studies indicated that the Ce-modified catalyst maintained the microporous-mesoporous structure of Y/SBA-15. The Ce ions were found to be uniformly dispersed in the pores of the molecular sieve without aggregation. The results from pyrolysis coupled-Fourier transform infrared spectroscopy(Pyridine-FTIR) and temperature programmed desorption of ammonia(NH3-TPD) showed that the loading of cerium caused the hydroxyl group in the catalyst to display stronger Bronsted acidity. The efficiency of the modified Ce-Y/SBA-15 catalyst was evaluated by using it to catalyze the synthesis of n-butyl acetate. The optimal synthesis conditions were determined by orthogonal experiments. The highest esterification yield of 94.4% was obtained when the reaction time was 2.0 h, with acid/alcohol molar ratio of 1:1.2, and catalyst loading of 10 wt.%. The results in this study demonstrated that the loading of cerium and the structure of Y/SBA-15 microporous-mesoporous composite molecular sieve helped in improving the catalytic activity of this acidic catalyst.展开更多
LiNi0.8Co0.1Mn0.1O2 cathode was synthesized using transition metal acetates under different synthesis conditions. Simultaneous thermogravimetric–differential scanning calorimetry–derivative thermogravimetric analysi...LiNi0.8Co0.1Mn0.1O2 cathode was synthesized using transition metal acetates under different synthesis conditions. Simultaneous thermogravimetric–differential scanning calorimetry–derivative thermogravimetric analysis was applied to investigating the mixture of transition metal acetates. X-ray powder diffraction and charge–discharge test were adopted to characterize the as-prepared LiNi0.8Co0.1Mn0.1O2. The mixture of transition metal acetates undergoes dehydration and decomposition during heating. All the examined LiNi0.8Co0.1Mn0.1O2 samples have a layered structure with R3 m space group. LiNi0.8Co0.1Mn0.1O2 samples prepared with different lithium sources under different synthesis conditions exhibit very different charge–discharge performances. The sample synthesized via the procedure of sintering at 800 °C after heating lithium carbonate and transition metal acetates at 550 °C achieves a highest capacity of 200.8 m A·h/g and an average capacity of 188.1 mA ·h/g in the first 20 cycles at 0.2C.展开更多
A new zinc acetate catalyst which was prepared from modified activated carbon exhibited extreme activity towards the synthesis of vinyl acetate. The activated carbon was modified by nitric acid, vitriol and peroxyacet...A new zinc acetate catalyst which was prepared from modified activated carbon exhibited extreme activity towards the synthesis of vinyl acetate. The activated carbon was modified by nitric acid, vitriol and peroxyacetic acid (PAA). The effect on specific area, structure, pH and surface acidity groups of carders by modification was discussed. Amount of carbonyl and carboxyl groups in activated carbon was increased by peroxyacetic acid treatment. The productivity of the new catalyst was 14.58% higher than that of catalyst prepared using untreated activated carbon. The relationship between amount of carbonyl and carboxyl groups (m) and catalyst productivity (P) was P = 1.83 + 2.26 × 10^-3*e^3.17m. Reaction mechanism was proposed. C 2009 Liang Rong Feng. Published by Elsevier B.V. on behalf of Chinese Chemical Society. All rights reserved.展开更多
Vinyl acetate (VA) synthesis on Pd/Au(111) and Pd/Au(100) surfaces has been systematically investigated through first-principles density functional theory (DFT) calculations. The DFr results showed that for VA...Vinyl acetate (VA) synthesis on Pd/Au(111) and Pd/Au(100) surfaces has been systematically investigated through first-principles density functional theory (DFT) calculations. The DFr results showed that for VA synthesis, the 'Samanos' reaction mechanism (i.e., direct coupling of coadsorbed ethylene and acetate species and subsequent/%hydride elimination to form VA) is more favorable than the 'Moiseev' mechanism (i.e., ethylene first dehydrogenates to form vinyl species which then couple with the coadsorbed acetate species to form VA). More importantly, it was found the surface coverage of acetate has a significant effect on the reactivity of VA synthesis, and the activation energy of the rate- controlling step on Pd/Au(100) surface is smaller than that on Pd/Au(111) surface (0.88 vs. 0.95 eV), indicating the former is more active than the latter.展开更多
The main problem in an efficient Zn(CH3COO)2/AC (AC-activated carbon) catalyst preparation is the achievement of uniform distribution of highly dispersed salt component on the activated carbon (AC) surface. The ...The main problem in an efficient Zn(CH3COO)2/AC (AC-activated carbon) catalyst preparation is the achievement of uniform distribution of highly dispersed salt component on the activated carbon (AC) surface. The solution of this problem is modification of the AC by hydrogen peroxide (H202) oxidation of the surface and treatment of AC with acetic acid as well as special methods of salt deposition and catalyst drying. The investigations of these ways of AC surface modification (treatment of AC with acetic acid and H2O2) have demonstrated the obtained AC to have both an increased adsorption capacity as to Zn(OAc)2 and optimum volumes of meso- and micro-pores as well as high catalyst activity in vinyl acetate (VA) synthesis. The characteristics of supports and catalysts were found out by benzene, water and acetic acid vapors adsorption. The distribution of the salt on the AC surface was studied by small-angle X-ray scattering (SAXS), by scanning electron microscopy (SEM) and X-ray micro-analysis (XMA). The catalysts were tested in vinyl acetate synthesis in flow-bed isothermal reactor by cyclic method at 175, 205 and 230℃.展开更多
Nd2O3 was used to support Al2O3 and ZnO to prepare a supported solid base catalyst and investigate the effect of catalyst and reaction conditions on the synthesis of tert-butyl acetate. The composited oxide of Nd2O3/A...Nd2O3 was used to support Al2O3 and ZnO to prepare a supported solid base catalyst and investigate the effect of catalyst and reaction conditions on the synthesis of tert-butyl acetate. The composited oxide of Nd2O3/Al2O3-Nd2O3/ZnO exhibited excellent catalytic activity for the synthsis of tert-butyl acetate. The molar ratio of tert-butanol to acetic anhydride is 3∶1, the catalyst in total amount of reactant nearly 0.5%, and reaction time 6 h. With the above conditions, yield of the reaction could reach to 65%. The structure of product were verified by the FT-IR, Element analysis, and MS, which proved that the product was tert-butyl acetate.展开更多
The first stereoselective total synthesis of oplopandiol acetate 1, a potent antimycobacterial polyyne isolated from Oplopanax horridus, is presented. And its absolute configuration is confirmed to be (11S,16S).
The new title compound, chiral 2-(3-methyl-2,3-dihydrobenzo[b][1,4]oxazin-4-yl)- 2-oxoethyl acetate, has been synthesized via reduction, cyclization and acylation reaction. The structure of the product has been conf...The new title compound, chiral 2-(3-methyl-2,3-dihydrobenzo[b][1,4]oxazin-4-yl)- 2-oxoethyl acetate, has been synthesized via reduction, cyclization and acylation reaction. The structure of the product has been confirmed by IR, 1H NMR, 13C NMR, LC-MS (ESI) and single-crystal X-ray diffraction. (R)-2-(3-methyl-2,3-dihydrobenzo[b][1,4]oxazin-4-yl)-2-oxoethyl acetate crystallizes in monoclinic, space group P21/c with a = 11.867(2), b = 8.4087(2), c = 14.325(6) A^°, β = 117.59(2)°, Z = 4, V = 1266.9(6) A^°3, Dc = 1.307 g/cm^3, F(000) = 528, μ(MoKα) = 0.097 mm-1, R = 0.0453 and wR = 0.1237; (S)-2-(3-methyl-2,3-dihydrobenzo[b][1,4]oxazin-4-yl)-2-oxoethyl acetate belongs to the triclinic system, space group P with a = 8.2647(17), b = 8.7034(17), c = 9.5479(19) A^°, α = 105.33(3), β = 100.95(3), γ = 105.14(3)°, Z = 2, V = 614.1(2) A^°3, Dc = 1.348 g/cm^3, F(000) = 264, μ(MoKα) = 0.10 mm-1, R = 0.0613 and wR = 0.1037. Both of the molecules prefer to form crystal packing through C–H…O hydrogen bonds.展开更多
the acetate of a novel phenolic glycoside, 1-O-beta-D-glucopyranosyl-( 1-->6)-beta-D-glucopyranosyloxy-3-hydroxy-5-methylbenzene anacardoside, from the fruits of Semecarpus anacardium, and its diastereomer were fir...the acetate of a novel phenolic glycoside, 1-O-beta-D-glucopyranosyl-( 1-->6)-beta-D-glucopyranosyloxy-3-hydroxy-5-methylbenzene anacardoside, from the fruits of Semecarpus anacardium, and its diastereomer were first synthesized using Koenigs-Knorr method from D-glucose through six steps with total yields 33% and 16% respectively.展开更多
In this paper, a reactive distillation (RD) column was applied for synthesis n-butyl acetate from n-butanol and acetic acid. The Langmuir-Hinshelwood-Hougen-Watson (LHHW) kinetic model and an equilibrium stage model f...In this paper, a reactive distillation (RD) column was applied for synthesis n-butyl acetate from n-butanol and acetic acid. The Langmuir-Hinshelwood-Hougen-Watson (LHHW) kinetic model and an equilibrium stage model for separation were employed to study the RD process. The results obtained from the equilibrium stage model agreed well with the experiments. The effects of operating variables on the n-butanol conversion and n-butyl acetate purity were further investigated. The optimal column configuration for the production of n-butyl acetate was designed with 5 rectifying stages, 8 reaction stages and 13 stripping stages by the simulation study. According to the simulation results, n-butanol conversion and n-butyl acetate purity all reached greater than 96%.展开更多
Reactive dividing-wall column(RDWC) technology plays a critical role in the energy saving and high efficiency of chemical process.In this article, the process of co-producing ethyl acetate(EA) and n-butyl acetate(BA) ...Reactive dividing-wall column(RDWC) technology plays a critical role in the energy saving and high efficiency of chemical process.In this article, the process of co-producing ethyl acetate(EA) and n-butyl acetate(BA) with RDWC was studied.BA was not only the product, but also acted as entrainer to remove the water generated by the two esterification reactions.Experiments and simulations of the co-production process were carried out.It was found that the experimental results were in good agreement with the simulation results.Two kinds of RDWC structures(RDWC-FC and RDWC-RS) were proposed, and the co-production process operating parameters of the two types of RDWC were optimized by Aspen Plus respectively.The optimal operating parameters of the RDWC-FC were determined as follows: 0.6 of the reflux ratio of aqueous phase(RR), 0.66 of the vapor split(R_V) and 0.51 of the liquid split(R_L).And the optimal operating parameters of the RDWC-RS were shown as follows: RR was 0.295 and R_V was 0.61.Furthermore, the energy saving analysis of the co-production process was based on the annual output of 10000 tons of EA, compared with the traditional reaction distillation(RD) to prepare EA and BA, the reboiler duty of the RDWC-FC column could save 20.4%, TAC saving 23.6%; RDWC-RS reboiler energy consumption could save 17.0%, TAC 22.2%.展开更多
The vapor-liquid equilibrium (VLE) data for the dimethyl carbonate-n-butyl acetate binary system were measured by an Ellis equilibrated distillator. The experimental data were checked for their thermodynamic consisten...The vapor-liquid equilibrium (VLE) data for the dimethyl carbonate-n-butyl acetate binary system were measured by an Ellis equilibrated distillator. The experimental data were checked for their thermodynamic consistency through statistical methods. The VLE data was correlated with Wilson and NRTL activity coefficient models and also with the calculation of the vapor phase fugacity coefficient by the modified Peng-Robinson equation of state.展开更多
Synthesis of acetic acid by direct oxidation of ethylene on Pd-H4SiW12O40-based catalysts was studied in a fixed-bed integral reactor and a pulse differential reactor. From the performance of the catalysts with differ...Synthesis of acetic acid by direct oxidation of ethylene on Pd-H4SiW12O40-based catalysts was studied in a fixed-bed integral reactor and a pulse differential reactor. From the performance of the catalysts with different compositions and configurations, it is proposed that acetic acid is predominantly produced via an intermediate of acetaldehyde. This can be easily confirmed by comparing the product distributions in the integral and the differential reactors. The active sites for acetic acid formation are considered to exist mainly at the boundaries between the H4SiW12O40 and the Pd particles. The Pd-based catalysts reduced by H2/N2 have higher activities than those reduced by hydrazine, as explained by the degree of Pd dispersion obtained from the characteristics of hydrogen chemical adsorption. It was found that the Pd-Se-SiW12/SiO2 catalyst with selenium tetrachloride as a precursor was more active than that with potassium selenite, and that the acetic acid yield can be greatly increased by adding a suitable amount of dichloroethane (C2H4C12/C2H4 mole ratio=0.03) to the reactants.展开更多
(2R,4S,SS)-(+)-threo-5-(2,2-dicloroacetamido)-4-(4-nitrophenyl-2aryl-l,3dioxanes, were synthesized with high diastereoselectivity and good yields. The structuresofacetals were determined and the configurations were co...(2R,4S,SS)-(+)-threo-5-(2,2-dicloroacetamido)-4-(4-nitrophenyl-2aryl-l,3dioxanes, were synthesized with high diastereoselectivity and good yields. The structuresofacetals were determined and the configurations were confirmed by 2D-NMR (NOESY).展开更多
Several aryloxy acetic acids were synthesized under microwave irradiation. The factors, which affect the reaction, were investigated and optimized. It was revealed that the best yields(92.7%—97.4%) were obtained when...Several aryloxy acetic acids were synthesized under microwave irradiation. The factors, which affect the reaction, were investigated and optimized. It was revealed that the best yields(92.7%—97.4%) were obtained when the molar ratio of the reactants was n(ArOH)∶n(NaOH)∶n(ClCH 2CO 2H) =1∶2.5∶1.2 with microwave irradiation power of 640 W for 65—85 s.展开更多
A novel Zn(Ⅱ) complex, [ZnL2(H2O)4]·H2O(1, HL = 2-(nicotinoyloxy)acetic acid), was synthesized using Zn(OAc)2·2H2O and 2-(nicotinoyloxy)acetic acid as raw materials. Its structure has been eluci...A novel Zn(Ⅱ) complex, [ZnL2(H2O)4]·H2O(1, HL = 2-(nicotinoyloxy)acetic acid), was synthesized using Zn(OAc)2·2H2O and 2-(nicotinoyloxy)acetic acid as raw materials. Its structure has been elucidated by elemental analysis, IR and single-crystal X-ray diffraction. The structural analysis revealed that complex 1 crystallizes in triclinic, space group P1 and the Zn(Ⅱ) atom is six-coordinated with two N atoms from two different 2-(nicotinoyloxy)acetate anion ligands and four O atoms from coordinated water molecules. Complex 1 forms a 3D network structure by O–H···O hydrogen bonds. The antitumor activities of 2-(nicotinoyloxy)acetic acid ligand and its Zn(Ⅱ) complex were evaluated against human lung adenocarcinoma A549 cells, human hepatoma SMMC-7721 cells and human colon carcinoma Wi Dr cells.展开更多
基金Supported by the National Natural Science Foundation of China(21161009)the Natural Science Foundation of Jiangxi Province(20122BAB213001,20114BAB213002)the Science and Technology Foundation of Jiangxi Province(GJJ11613)
文摘A novel cerium(Ⅲ) salt of Dawson type tungstophosphoric acid(Ce2P2W18O62·16H2O) was prepared by doping cerous nitrate in H6P2W18O62·13H2O powder and characterized by thermogravimetry and differential thermal analyses(TG/DTA),Fourier transform infrared spectroscopy(FT-IR),X-ray powder diffraction(XRD),pyridine infrared spectroscopy(Py-IR) and scanning electron microscopy(SEM).Its catalytic activity was evaluated by the probe reaction of synthesis of n-butyl acetate with acetic acid and n-butanol.The effects of various parameters such as molar ratio of n-butanol to acetic acid,reaction temperature,reaction time,and catalyst amount have been studied by single factor experiment.The results show that Ce2P2W18O62·16H2O behaved as an excellent heterogeneous catalyst in the synthesis of n-butyl acetate.The optimum synthetic conditions were determined as follows︰molar ratio of n-butanol to acetic acid at 2.0︰1.0,mass of the catalyst being 1.44% of the total reaction mixture,reaction temperature of 120 ℃ and reaction time of 150 min.Under above conditions,the conversion of acetic acid was above 97.8%.The selectivity of n-butyl acetate based on acetic acid was,in all cases,nearly 100%.The catalysts could be recycled and still exhibited high catalytic activity with 90.4% conversion after five cycles of reaction.It was found by means of TG-DTA and Py-IR that the catalyst deactivation was due to the adsorption of a complex of by-product on the active sites on catalysts surface or the catalyst loss in its separation from the products.Compared with using sulfuric acid as catalyst,the present procedure with Ce2P2W18O62·16H2O is a green productive technology due to simple process,higher yield,catalyst recycling and no corrosion for the production facilities.
文摘Introduction Microwave irradiation has been very widely used in heating, cooking and brewing. Several papers which describe the use of domestic microwave ovens to perform rapid organic synthesis in solution have been published. The high heating efficiency gives rise to remarkable rate of reaction and dramatic reduction of reaction time. Nevertheless, its application seems to be limited to these procedures because of
基金Project supported by the Research Fund for the Doctoral Program of Higher Education(20100042110008)the Talent Scientific Research Fund of Liaoning Shihua University
文摘A novel Ce-Y/SBA-15 catalyst was prepared by modifying HY/SBA-15 microporous-mesoporous composite molecular sieve with cerium using the impregnation method. The characterization results from scanning electron microscopy/energy dispersive X-ray dispersive spectroscopy(SEM/EDS), transmission electron microscopy(TEM), and X-ray fluorescence(XRF) studies indicated that the Ce-modified catalyst maintained the microporous-mesoporous structure of Y/SBA-15. The Ce ions were found to be uniformly dispersed in the pores of the molecular sieve without aggregation. The results from pyrolysis coupled-Fourier transform infrared spectroscopy(Pyridine-FTIR) and temperature programmed desorption of ammonia(NH3-TPD) showed that the loading of cerium caused the hydroxyl group in the catalyst to display stronger Bronsted acidity. The efficiency of the modified Ce-Y/SBA-15 catalyst was evaluated by using it to catalyze the synthesis of n-butyl acetate. The optimal synthesis conditions were determined by orthogonal experiments. The highest esterification yield of 94.4% was obtained when the reaction time was 2.0 h, with acid/alcohol molar ratio of 1:1.2, and catalyst loading of 10 wt.%. The results in this study demonstrated that the loading of cerium and the structure of Y/SBA-15 microporous-mesoporous composite molecular sieve helped in improving the catalytic activity of this acidic catalyst.
基金Project(2010ZC051)supported by the Natural Science Foundation of Yunnan Province,ChinaProject(20140439)supported by the Analysis and Testing Foundation from Kunming University of Science and Technology,ChinaProject(14118245)supported by the Starting Research Fund from Kunming University of Science and Technology,China
文摘LiNi0.8Co0.1Mn0.1O2 cathode was synthesized using transition metal acetates under different synthesis conditions. Simultaneous thermogravimetric–differential scanning calorimetry–derivative thermogravimetric analysis was applied to investigating the mixture of transition metal acetates. X-ray powder diffraction and charge–discharge test were adopted to characterize the as-prepared LiNi0.8Co0.1Mn0.1O2. The mixture of transition metal acetates undergoes dehydration and decomposition during heating. All the examined LiNi0.8Co0.1Mn0.1O2 samples have a layered structure with R3 m space group. LiNi0.8Co0.1Mn0.1O2 samples prepared with different lithium sources under different synthesis conditions exhibit very different charge–discharge performances. The sample synthesized via the procedure of sintering at 800 °C after heating lithium carbonate and transition metal acetates at 550 °C achieves a highest capacity of 200.8 m A·h/g and an average capacity of 188.1 mA ·h/g in the first 20 cycles at 0.2C.
文摘A new zinc acetate catalyst which was prepared from modified activated carbon exhibited extreme activity towards the synthesis of vinyl acetate. The activated carbon was modified by nitric acid, vitriol and peroxyacetic acid (PAA). The effect on specific area, structure, pH and surface acidity groups of carders by modification was discussed. Amount of carbonyl and carboxyl groups in activated carbon was increased by peroxyacetic acid treatment. The productivity of the new catalyst was 14.58% higher than that of catalyst prepared using untreated activated carbon. The relationship between amount of carbonyl and carboxyl groups (m) and catalyst productivity (P) was P = 1.83 + 2.26 × 10^-3*e^3.17m. Reaction mechanism was proposed. C 2009 Liang Rong Feng. Published by Elsevier B.V. on behalf of Chinese Chemical Society. All rights reserved.
基金supported by the State Key Program of Natural Science of Tianjin (Grant No. 13JCZDJC26800)the foundation of State Key Laboratory of Coal Conversion (Grant No. J13-14-908)
文摘Vinyl acetate (VA) synthesis on Pd/Au(111) and Pd/Au(100) surfaces has been systematically investigated through first-principles density functional theory (DFT) calculations. The DFr results showed that for VA synthesis, the 'Samanos' reaction mechanism (i.e., direct coupling of coadsorbed ethylene and acetate species and subsequent/%hydride elimination to form VA) is more favorable than the 'Moiseev' mechanism (i.e., ethylene first dehydrogenates to form vinyl species which then couple with the coadsorbed acetate species to form VA). More importantly, it was found the surface coverage of acetate has a significant effect on the reactivity of VA synthesis, and the activation energy of the rate- controlling step on Pd/Au(100) surface is smaller than that on Pd/Au(111) surface (0.88 vs. 0.95 eV), indicating the former is more active than the latter.
文摘The main problem in an efficient Zn(CH3COO)2/AC (AC-activated carbon) catalyst preparation is the achievement of uniform distribution of highly dispersed salt component on the activated carbon (AC) surface. The solution of this problem is modification of the AC by hydrogen peroxide (H202) oxidation of the surface and treatment of AC with acetic acid as well as special methods of salt deposition and catalyst drying. The investigations of these ways of AC surface modification (treatment of AC with acetic acid and H2O2) have demonstrated the obtained AC to have both an increased adsorption capacity as to Zn(OAc)2 and optimum volumes of meso- and micro-pores as well as high catalyst activity in vinyl acetate (VA) synthesis. The characteristics of supports and catalysts were found out by benzene, water and acetic acid vapors adsorption. The distribution of the salt on the AC surface was studied by small-angle X-ray scattering (SAXS), by scanning electron microscopy (SEM) and X-ray micro-analysis (XMA). The catalysts were tested in vinyl acetate synthesis in flow-bed isothermal reactor by cyclic method at 175, 205 and 230℃.
文摘Nd2O3 was used to support Al2O3 and ZnO to prepare a supported solid base catalyst and investigate the effect of catalyst and reaction conditions on the synthesis of tert-butyl acetate. The composited oxide of Nd2O3/Al2O3-Nd2O3/ZnO exhibited excellent catalytic activity for the synthsis of tert-butyl acetate. The molar ratio of tert-butanol to acetic anhydride is 3∶1, the catalyst in total amount of reactant nearly 0.5%, and reaction time 6 h. With the above conditions, yield of the reaction could reach to 65%. The structure of product were verified by the FT-IR, Element analysis, and MS, which proved that the product was tert-butyl acetate.
基金the State Key' Laboratory of Drug Research tbr tinancial supper't.
文摘The first stereoselective total synthesis of oplopandiol acetate 1, a potent antimycobacterial polyyne isolated from Oplopanax horridus, is presented. And its absolute configuration is confirmed to be (11S,16S).
基金supported by the National Natural Science Foundation of China(No.31572042)Natural Science Foundation of Heilongjiang Province(B201303)the Research Science Foundation in Technology Innovation of Harbin(No.2015RAYXJ010)
文摘The new title compound, chiral 2-(3-methyl-2,3-dihydrobenzo[b][1,4]oxazin-4-yl)- 2-oxoethyl acetate, has been synthesized via reduction, cyclization and acylation reaction. The structure of the product has been confirmed by IR, 1H NMR, 13C NMR, LC-MS (ESI) and single-crystal X-ray diffraction. (R)-2-(3-methyl-2,3-dihydrobenzo[b][1,4]oxazin-4-yl)-2-oxoethyl acetate crystallizes in monoclinic, space group P21/c with a = 11.867(2), b = 8.4087(2), c = 14.325(6) A^°, β = 117.59(2)°, Z = 4, V = 1266.9(6) A^°3, Dc = 1.307 g/cm^3, F(000) = 528, μ(MoKα) = 0.097 mm-1, R = 0.0453 and wR = 0.1237; (S)-2-(3-methyl-2,3-dihydrobenzo[b][1,4]oxazin-4-yl)-2-oxoethyl acetate belongs to the triclinic system, space group P with a = 8.2647(17), b = 8.7034(17), c = 9.5479(19) A^°, α = 105.33(3), β = 100.95(3), γ = 105.14(3)°, Z = 2, V = 614.1(2) A^°3, Dc = 1.348 g/cm^3, F(000) = 264, μ(MoKα) = 0.10 mm-1, R = 0.0613 and wR = 0.1037. Both of the molecules prefer to form crystal packing through C–H…O hydrogen bonds.
文摘the acetate of a novel phenolic glycoside, 1-O-beta-D-glucopyranosyl-( 1-->6)-beta-D-glucopyranosyloxy-3-hydroxy-5-methylbenzene anacardoside, from the fruits of Semecarpus anacardium, and its diastereomer were first synthesized using Koenigs-Knorr method from D-glucose through six steps with total yields 33% and 16% respectively.
文摘In this paper, a reactive distillation (RD) column was applied for synthesis n-butyl acetate from n-butanol and acetic acid. The Langmuir-Hinshelwood-Hougen-Watson (LHHW) kinetic model and an equilibrium stage model for separation were employed to study the RD process. The results obtained from the equilibrium stage model agreed well with the experiments. The effects of operating variables on the n-butanol conversion and n-butyl acetate purity were further investigated. The optimal column configuration for the production of n-butyl acetate was designed with 5 rectifying stages, 8 reaction stages and 13 stripping stages by the simulation study. According to the simulation results, n-butanol conversion and n-butyl acetate purity all reached greater than 96%.
基金Supported by the National Key R&D Program of China(2017YFB0602500)the Key Basic Research Items in Application Basic Research Program of Hebei Province,China(16964502D)
文摘Reactive dividing-wall column(RDWC) technology plays a critical role in the energy saving and high efficiency of chemical process.In this article, the process of co-producing ethyl acetate(EA) and n-butyl acetate(BA) with RDWC was studied.BA was not only the product, but also acted as entrainer to remove the water generated by the two esterification reactions.Experiments and simulations of the co-production process were carried out.It was found that the experimental results were in good agreement with the simulation results.Two kinds of RDWC structures(RDWC-FC and RDWC-RS) were proposed, and the co-production process operating parameters of the two types of RDWC were optimized by Aspen Plus respectively.The optimal operating parameters of the RDWC-FC were determined as follows: 0.6 of the reflux ratio of aqueous phase(RR), 0.66 of the vapor split(R_V) and 0.51 of the liquid split(R_L).And the optimal operating parameters of the RDWC-RS were shown as follows: RR was 0.295 and R_V was 0.61.Furthermore, the energy saving analysis of the co-production process was based on the annual output of 10000 tons of EA, compared with the traditional reaction distillation(RD) to prepare EA and BA, the reboiler duty of the RDWC-FC column could save 20.4%, TAC saving 23.6%; RDWC-RS reboiler energy consumption could save 17.0%, TAC 22.2%.
基金Supported by the China Petrochemical Corporation.
文摘The vapor-liquid equilibrium (VLE) data for the dimethyl carbonate-n-butyl acetate binary system were measured by an Ellis equilibrated distillator. The experimental data were checked for their thermodynamic consistency through statistical methods. The VLE data was correlated with Wilson and NRTL activity coefficient models and also with the calculation of the vapor phase fugacity coefficient by the modified Peng-Robinson equation of state.
文摘Synthesis of acetic acid by direct oxidation of ethylene on Pd-H4SiW12O40-based catalysts was studied in a fixed-bed integral reactor and a pulse differential reactor. From the performance of the catalysts with different compositions and configurations, it is proposed that acetic acid is predominantly produced via an intermediate of acetaldehyde. This can be easily confirmed by comparing the product distributions in the integral and the differential reactors. The active sites for acetic acid formation are considered to exist mainly at the boundaries between the H4SiW12O40 and the Pd particles. The Pd-based catalysts reduced by H2/N2 have higher activities than those reduced by hydrazine, as explained by the degree of Pd dispersion obtained from the characteristics of hydrogen chemical adsorption. It was found that the Pd-Se-SiW12/SiO2 catalyst with selenium tetrachloride as a precursor was more active than that with potassium selenite, and that the acetic acid yield can be greatly increased by adding a suitable amount of dichloroethane (C2H4C12/C2H4 mole ratio=0.03) to the reactants.
文摘(2R,4S,SS)-(+)-threo-5-(2,2-dicloroacetamido)-4-(4-nitrophenyl-2aryl-l,3dioxanes, were synthesized with high diastereoselectivity and good yields. The structuresofacetals were determined and the configurations were confirmed by 2D-NMR (NOESY).
文摘Several aryloxy acetic acids were synthesized under microwave irradiation. The factors, which affect the reaction, were investigated and optimized. It was revealed that the best yields(92.7%—97.4%) were obtained when the molar ratio of the reactants was n(ArOH)∶n(NaOH)∶n(ClCH 2CO 2H) =1∶2.5∶1.2 with microwave irradiation power of 640 W for 65—85 s.
基金supported by the National Natural Science Foundation of China(No.21171132)the Project of Shandong Province Higher Educational Science and Technology Program(J14LC01)Science Foundation of Weifang
文摘A novel Zn(Ⅱ) complex, [ZnL2(H2O)4]·H2O(1, HL = 2-(nicotinoyloxy)acetic acid), was synthesized using Zn(OAc)2·2H2O and 2-(nicotinoyloxy)acetic acid as raw materials. Its structure has been elucidated by elemental analysis, IR and single-crystal X-ray diffraction. The structural analysis revealed that complex 1 crystallizes in triclinic, space group P1 and the Zn(Ⅱ) atom is six-coordinated with two N atoms from two different 2-(nicotinoyloxy)acetate anion ligands and four O atoms from coordinated water molecules. Complex 1 forms a 3D network structure by O–H···O hydrogen bonds. The antitumor activities of 2-(nicotinoyloxy)acetic acid ligand and its Zn(Ⅱ) complex were evaluated against human lung adenocarcinoma A549 cells, human hepatoma SMMC-7721 cells and human colon carcinoma Wi Dr cells.