CO_(2)-to-formate electrosynthesis with high selectivity and stability has been a long-sought objective.Unfortunately,most catalysts undergo structural and valence state changes due to surface oxidation during operati...CO_(2)-to-formate electrosynthesis with high selectivity and stability has been a long-sought objective.Unfortunately,most catalysts undergo structural and valence state changes due to surface oxidation during operation or storage,resulting in decreased catalytic performance.Herein,we report a efficient and stable BiIn@Cu-foam electrode through the in-situ regeneration of Bi^(0) active sites to renew the surface activation.The electronic structure of Bi site can be regulated by introducing In,thereby enhancing the adsorption strength of*OCHO.The optimized electrode exhibits over 90%FE_(formate)at a wide potential window(-0.9–-2.2 V),and formation rate for 3.15 mM cm^(-1)h^(-1).Especially,the electrode can maintain the high performance at continuously electrolysis for more than 300 h,or for more than 50 cycles,even repeated operation and storage for more than 2 years.This work provides a promising candidate and new insight to construct industrially viable stable Bi-based catalyst for formate electrosynthesis.展开更多
Titanium matrix composites reinforced with ceramic particles are considered a promising engineering material due to their combination of high specific strength,low density,and high modulus.In this study,the TA15-based...Titanium matrix composites reinforced with ceramic particles are considered a promising engineering material due to their combination of high specific strength,low density,and high modulus.In this study,the TA15-based composites reinforced with a volume fraction of 10% to 25%(TiB+TiC)were prepared using powder metallurgy and casting technique.Microstructural characterization and phase constitution were examined using optical microscopy(OM),scanning electron microscopy(SEM),and X-ray diffraction(XRD).In addition,the microhardness,room temperature(RT)and high temperature(HT)tensile properties of the composites were evaluated.Results revealed that the reinforcements are distributed uniformly even in the composites with a high volume of TiB and TiC.However,as the volume fraction exceeds 15%,TiB and TiC particles become coarsening and exhibit rod-like and dendritic-like morphology.Microhardness increases gradually from 321.2 HV for the base alloy to a maximum of 473.3 HV as the reinforcement increases to 25vol.%.Tensile test results indicate that a reinforcement volume fraction above 20% is beneficial for enhancing tensile strength and yield strength at high temperatures,but it has an adverse effect on room temperature elongation.Conversely,if the reinforcement volume fraction is below 20%,it can improve high-temperature elongation when the temperature exceeds 600℃.展开更多
Using nickel catalyst supported on aluminum powders, carbon nanotubes (CNTs) were successfully synthesized in aluminum powders by in-situ chemical vapor deposition at 650 ℃. Structural characterization revealed tha...Using nickel catalyst supported on aluminum powders, carbon nanotubes (CNTs) were successfully synthesized in aluminum powders by in-situ chemical vapor deposition at 650 ℃. Structural characterization revealed that the as-grown CNTs possessed higher graphitization degree and straight graphite shell. By this approach, more homogeneous dispersion of CNTs in aluminum powders was achieved compared with the traditional mechanical mixture methods. Using the in-situ synthesized CNTs/Al composite powders and powder metallurgy process, CNTs/Al bulk composites were prepared. Performance testing showed that the mechanical properties and dimensional stability of the composites were improved obviously, which was attributed to the superior dispersion of CNTs in aluminum matrix and the strong interfacial bonding between CNTs and matrix.展开更多
Using titanium wires (99.5%, 200 μm in diameter) as a reactive source, an Al-based composite coating reinforced by titanium tri-aluminide (A13Ti) particles was fabricated by infiltration plus in-situ methods. Acc...Using titanium wires (99.5%, 200 μm in diameter) as a reactive source, an Al-based composite coating reinforced by titanium tri-aluminide (A13Ti) particles was fabricated by infiltration plus in-situ methods. According to the differential thermal analysis (DTA) curve, the reactive temperature between Ti wires and A1 matrix can be determined at 890 ℃. The obtained composite coatings were characterized by X-ray diffraction (XRD), scanning electron microscopy (SEM), and microhardness and wear test. The experimental results show that when holding period is 20 min at 890℃, the titanium wires react completely to in-situ synthesize Al3Ti particles, which presents blocky and strip-like states. The microhardness of in-situ synthesized Al3Ti particles is about 4.5 times that of the Al-matrix. Under the condition of dry sliding at 10 N load, compared with the unreinforced Al matrix, the composite coating fabricated with 20 min offers unique wear resistance behavior, and its wear mechanism is that the adhesive wear and abrasive wear coexist.展开更多
The magnesia -hercynite bricks offer a new lining to rotary cement kiln. They are well adopted and widely used in the high temperature zone of cement kiln, and have obtained good performance at rigorous and severe wor...The magnesia -hercynite bricks offer a new lining to rotary cement kiln. They are well adopted and widely used in the high temperature zone of cement kiln, and have obtained good performance at rigorous and severe working conditions. The synthesis of hercynite requires a suitable atmosphere with proper O2 partial pressures which makes sure FeO can stably exist at the synthesizing temperature. Current industrial production of hercynite mainly adopts fused method. The other method, sinte- ring method, is not mature and needs further research. The magnesia - hercynite brick shows high hot toughhess, high adhesion strength to kiln crust, and good corrosion resistance to alkali salt in cement kilns. The mismatching of thermal expansion between magnesia and hercynite can improve the thermal shock resistance of the bricks, but the oxidation of partial Fe^2+ , the high temperature solution, and low temperature exsolution of transgranular secondary spinel lead to cubical expansion, .formation of more cracks, and poor thermal shock resistance of the bricks.展开更多
The growth mechanism of reinforcement in in situ synthesized (TiB+TiC)/Ti composites was investigated. The results show that reinforcements nucleate and grow in a way of dissolution precipitation. The morphologies of ...The growth mechanism of reinforcement in in situ synthesized (TiB+TiC)/Ti composites was investigated. The results show that reinforcements nucleate and grow in a way of dissolution precipitation. The morphologies of reinforcements are closely related to the solidification paths and crystal structure of reinforcements. TiB, as a reinforcement, is liable to grow along [010] direction and forms in short fibre shape due to its B27 structure, whereas primary TiC is liable to form composition undercooling and grow in dendritic shape. TiC phases precipitated in binary eutectic and ternary eutectic reactions grow in equiaxial shape. The addition of aluminum element refines TiB and TiC particles, and makes TiC reinforcements grow into the equiaxial particles easily. The addition of graphite adjusts the solidification paths and forms more TiC with dendritic shape. [展开更多
Zeolites ZSM-5 with different Si/Al ratios were in-situ synthesized on the surface ofhoneycomb-shaped cordierite support for the first time. Characterizations of XRD and SEM wereperformed and it has been proved that t...Zeolites ZSM-5 with different Si/Al ratios were in-situ synthesized on the surface ofhoneycomb-shaped cordierite support for the first time. Characterizations of XRD and SEM wereperformed and it has been proved that the zeolite ZSM-5 was grown on the surface of the cordieritehomogeneously. NO decomposition on the Cu exchanged ZSM-5/cordierite monolith catalysts wasalso studied. It was found that the monolith catalysts have a fine initial activity at 673K and GHSVof 10,000h-1. Such method should be a good way to make auto exhaust converter with monolithcatalyst for NOx removal.展开更多
A novel technology of tuyere protection is introduced. The ceramic coat .is synthesized by using in-situ combustion process as the internal, external, and nose protecting coat of BF tuyeres. It can effectively protect...A novel technology of tuyere protection is introduced. The ceramic coat .is synthesized by using in-situ combustion process as the internal, external, and nose protecting coat of BF tuyeres. It can effectively protect the tuyeres and reduce heat loss by cooling water. The technglogy is quick-acting, easy to use, energy-saving and can make tuyeres have long service life. The feasibility of the application of the tuyere ceramic coat is discussed and the energy-saving effect of the tuyere is compared with that of the tuyeres lined with refractory.展开更多
Aluminum titanate was in-situ synthesized by using industrial waste-residue in the aluminum factory and TiO2 as the main raw materials and the influence of different reaction temperatures on the purity and microstruct...Aluminum titanate was in-situ synthesized by using industrial waste-residue in the aluminum factory and TiO2 as the main raw materials and the influence of different reaction temperatures on the purity and microstructures of synthesized products were mainly discussed. The obtained Al2TiO5 was characterized by X-ray diffraction (XRD), scanning electron microscopy (SEM) and relevant analytical software. The results show that elevating the sintering temperature can increase the content of aluminum titanate; and at 1420 ℃, it reaches the highest in the synthesized ceramic. When the sintering temperature continues to increase, the produced aluminum titanate will decompose resulting in the drop of its content. Therefore, the optimum sintering temperature of in-situ synthesis of aluminum titanate is determined as 1420 ℃, at which the grains of aluminum titanate grow completely, the purity of aluminum titanate is 89.3wt%., the highest density is 2.75 g/cm^3, and the porosity is 9%.展开更多
To improve stability of scorodite,a method of simultaneous synthesis and in-situ coating of scorodite was proposed.Scorodite particles with polyhedral and raspberry-like morphologies were synthesized in an Fe(Ⅱ).As(...To improve stability of scorodite,a method of simultaneous synthesis and in-situ coating of scorodite was proposed.Scorodite particles with polyhedral and raspberry-like morphologies were synthesized in an Fe(Ⅱ).As(Ⅴ).H2O system at 90℃and pH 1.5 by blowing oxygen gas into the system.When the initial Fe/As molar ratio exceeded 1:1,a coating of sulfate-containing iron(hydr)oxides formed on the surfaces of scorodite particles during synthesis.To evaluate the leaching stability of synthesized scorodite samples,toxicity characteristic leaching procedure(TCLP)tests were conducted at pH 4.93 for 60 h,and long-term leaching tests were conducted for 30.40 d within a pH range of 5.40.10.88.The leaching results indicated that the release of arsenic from scorodite was noticeably postponed by the coating,and the average arsenic concentrations in the leaching solutions were as low as 0.12 mg/L in the TCLP tests and lower than 0.5 mg/L in the long-term leaching tests.展开更多
Para-xylene was chosen as the probe molecule to study adsorption thermodynamics and diffusion kinetics on NaY zeolite and composite structured NaY zeolite synthesized by in-situ crystallization from kaolin microsphere...Para-xylene was chosen as the probe molecule to study adsorption thermodynamics and diffusion kinetics on NaY zeolite and composite structured NaY zeolite synthesized by in-situ crystallization from kaolin microsphere(designated as Na Y/kaolin composites) separately, using a high precision intelligent gravimetric analyzer(IGA). The adsorption isotherms showed normal Langmuir type-Ⅰ behaviors. The increased adsorption heat with an increasing p-xylene coverage supported a mechanism of phase transition, diffusion and re-arrangement of p-xylene molecules during the adsorption process. The rearrangement seemed to be most pronounced at an adsorption loading of 2.13 and 2.29 mmol/g for Na Y zeolite and Na Y/kaolin composites respectively. Compared with Na Y zeolite, a 2—3 times higher in the diffusion coefficient of p-xylene was observed on Na Y/kaolin composites when the pressure was more than 50 Pa. Temperature-programmed desorption(TPD) of p-xylene on two samples from room temperature to 450 ℃ at a special loading has also been investigated by IGA. Results showed only single desorption peak appeared for Na Y zeolite, indicating that adsorption can only occur in the super-cage structure. Comparably, there were two different peaks for in-situ synthesized Na Y zeolite, corresponding to the two thermo desorption processes in both super-cage structure and the channels provided by kaolin, respectively.Key words:展开更多
In-situ TiB2/7055Al nanocomposites are fabricated by in situ melt chemical reaction from 7055Al-K2TiF6-KBF4 system under high intensity ultrasonic field,and the mechanism and kinetic model of in-situ melt chemical rea...In-situ TiB2/7055Al nanocomposites are fabricated by in situ melt chemical reaction from 7055Al-K2TiF6-KBF4 system under high intensity ultrasonic field,and the mechanism and kinetic model of in-situ melt chemical reaction are investigated.X-ray diffraction (XRD) and scanning electron microscope (SEM) analyses indicate that the sizes of in-situ TiB2 nanoparticles are in the range of 80-120 nm.The results of ice-water quenched samples show that the whole process contains four stages,and the overall in-situ reaction time is 10 minutes.The in situ synthesis process is controlled mainly by chemical reaction in earlier stage (former 3 minutes),and by the particulate diffusing in later stage.The mechanism of key reaction between Al3Ti and AlB2 under high intensity ultrasonic in the 7055Al-K2TiF6-KBF4 system is the reaction-diffusion-crack-rediffusion.Furthermore,the reactive kinetic models in 7055Al-K2TiF6-KBF4 system are established.展开更多
Ti3SiC2/TiB2 composite was successfully obtained by hot pressing Ti/TiC/Si/B4C power mixtures.Volume fraction of TiB2 in Ti3SiC2/TiB2 composite can not exceed 10%.Incorporation of excessive TiB2 will affect the reacti...Ti3SiC2/TiB2 composite was successfully obtained by hot pressing Ti/TiC/Si/B4C power mixtures.Volume fraction of TiB2 in Ti3SiC2/TiB2 composite can not exceed 10%.Incorporation of excessive TiB2 will affect the reactions process.TiC and Ti5Si3 were two important intermediate phases during the whole reactions.The microstructure characteristics of the Ti3SiC2/TiB2 composites were analyzed using scanning electron microscopy (SEM) and transmission electron microscopy (TEM).The experimental results show that the grains of Ti3SiC2/TiB2 composite are structured in a layered form,and the formation of TiB2 particles as reinforcements with elongated or equiaxed shape distributes in Ti3SiC2 matrix.展开更多
CeB6/B4C ceramic composite was fabricated by hot-pressed sintering via in-situ synthesis reaction among B4C, CeOand C. The effects of CeB6 content on the performance and microstructure of CeB6/B4C composites were inve...CeB6/B4C ceramic composite was fabricated by hot-pressed sintering via in-situ synthesis reaction among B4C, CeOand C. The effects of CeB6 content on the performance and microstructure of CeB6/B4C composites were investigated. As the content of CeB6 was 2.42%, the microhardness of CeB6/B4C composite reached the maximum of 40.64 GPa, which was higher than that of monolithic B4C by 52.5%. As the content of CeB6 was 4.89%, the flexibility strength and the fracture toughness of CeB6/B4C composite reached the peak values of 346.7 MPa and 5.95 MPa·m1/2 respectively, which were higher than those of monolithic B4C by 17.96% and 61.7% respectively. The integrated mechanical property of CeB6/B4C ceramic composite with the 4.89% CeB6 content is optimal. It was also found that as in-situ synthesis of CeB6, the crystal grain growth was inhibited, and crystallite arrangement was so compact that the pores gradually reduced. The main fracture mode of CeB6/B4C ceramic composite was intercrystalline rupture, while the transcrystalline rupture was minor.展开更多
ZSM-5 zeolite was in-situ synthesized from metakaolin or s alumina sources, respectively. The ZSM-5 zeolite was characterized pinel by incorporating additional silica and by X-ray diffractometry (XRD), scanning elec...ZSM-5 zeolite was in-situ synthesized from metakaolin or s alumina sources, respectively. The ZSM-5 zeolite was characterized pinel by incorporating additional silica and by X-ray diffractometry (XRD), scanning electron microscopy (SEM), Fourier transform infrared (FT-IR) spectroscopy and N2 adsorption measurement. This supported zeolite was tested on the methanol to propylene (MTP) processes. Experimental results showed that the ZSM-5 zeolite exhibited high selectivity for propylene. The yield of propylene on ZSM-5 zeolite made from metakaolin was increased by 17.73%, while that on ZSM-5 zeolite made from spinel was raised by 9.90%, compared to that achieved with the commercial ZSM-5 zeolite. The significant increase in propylene production is probably due to the distinctive morphology of the ZSM-5 zeolite, which possessed a rough external surface covered with sphere-like particles and distribution of small crystals sized at around 400--500 nm. This morphology could help to generate more crystal defects so that more active centers could be exposed to the reaction mixture. In addition, the zeolite product had a gradient pore distribution and many medium Brǒnsted acid sites, both of which might also contribute to the increased propylene production.展开更多
By means of an inherent elevated-temperature of poured liquid steel,a Ti-C-30wt%Fe preform,which was pre-placed in a mould cavity,was directly ignited and a combustion synthesis reaction took place.As a result,a TiC-F...By means of an inherent elevated-temperature of poured liquid steel,a Ti-C-30wt%Fe preform,which was pre-placed in a mould cavity,was directly ignited and a combustion synthesis reaction took place.As a result,a TiC-Fe cermet coating with a thickness of about 10mm was simultaneously synthesized on the solidified steel matrix.The synthesized coating exhibits a feature of graded composite structure,in which both the amount and size of TiC particles decrease gradually with an increasing distance from the furface of the coating.Moreover,by a proper casting technique,the pores formed during the combustion synthesis of the preform could be centrally distributed in 2-3mm in outer layer of the coating.When this outer porous layer was worn off,the rest coating with a thickness of about 8mm possesses a dense structure and a high abrasive wear resistance.展开更多
Copper azide with high density was successfully synthesized by in-situ reaction of nanoporous copper(NPC)precursor with HN_(3) gaseous.NPC with pore size of about 529 nm has been prepared by electroless plating using ...Copper azide with high density was successfully synthesized by in-situ reaction of nanoporous copper(NPC)precursor with HN_(3) gaseous.NPC with pore size of about 529 nm has been prepared by electroless plating using polystyrene(PS)as templates.The copper shells thickness of NPC was controlled by adjusting the PS loading amount.The effects of copper shell on the morphology,structure and density of copper azide were investigated.The conversion increased from 87.12%to 95.31%when copper shell thickness decrease from 100 to 50 nm.Meanwhile,the density of copper azide prepared by 529 nm NPC for 24 h was up to 2.38 g/cm^(3).The hollow structure of this NPC was filled by swelling of copper azide which guaranteed enough filling volume for keeping the same shape as well as improving the charge density.Moreover,HNS-IV explosive was successfully initiated by copper azide with minimum charge thickness of 0.55 mm,showing that copper azide prepared has excellent initiation performance,which has more advantages in the application of miniaturized explosive systems.展开更多
The whole performance of the networked control system (NCSs) depends on two interaction factors, namely the quality of control performance (QoP) and quality of network service (QoS). So, to optimize the whole pe...The whole performance of the networked control system (NCSs) depends on two interaction factors, namely the quality of control performance (QoP) and quality of network service (QoS). So, to optimize the whole perfor-mance of NCSs, the problem of guaranteeing QoP and QoS plays an important role in the design of NCSs. However, up to now, little work has been done in this field. In this paper, a synthesizing control model of NCSs to guarantee QoP and QoS is proposed, and a feasible condition of optimizing whole performance of NCSs is also suggested. Finally, the simulation results show that the proposed model is effective.展开更多
In-situ 5 vol.pct TiB whiskers and TiC particulates reinforced Ti composites were fabricated by blending Ti powderand B4C particulates followed by reactive hot-pressing. The microstructure of the composites was invest...In-situ 5 vol.pct TiB whiskers and TiC particulates reinforced Ti composites were fabricated by blending Ti powderand B4C particulates followed by reactive hot-pressing. The microstructure of the composites was investigated byusing differential scanning calorimetry (DSC), X-ray diffraction (XRD), transmission electron microscope (TEM)and scanning electron microscope (SEM). The results showed that the reactive temperature between Ti and B4C isabove 570°. Two kinds of reinforcements with different shapes were formed during hot-pressing: TiB short-fiber andequiaxed TiC particles. The interracial bonding between the reinforcements and Ti matrix is perfect. No interracialreaction between reinforcements and Ti matrix was found.展开更多
基金supported by the National Natural Science Foundation of China(22238013 and 22178393)Postdoctoral Science Foundation of Central South University(320808)+1 种基金Natural Science Foundation of Hunan Province(2023JJ40706)the High Performance Computing Center of Central South University。
文摘CO_(2)-to-formate electrosynthesis with high selectivity and stability has been a long-sought objective.Unfortunately,most catalysts undergo structural and valence state changes due to surface oxidation during operation or storage,resulting in decreased catalytic performance.Herein,we report a efficient and stable BiIn@Cu-foam electrode through the in-situ regeneration of Bi^(0) active sites to renew the surface activation.The electronic structure of Bi site can be regulated by introducing In,thereby enhancing the adsorption strength of*OCHO.The optimized electrode exhibits over 90%FE_(formate)at a wide potential window(-0.9–-2.2 V),and formation rate for 3.15 mM cm^(-1)h^(-1).Especially,the electrode can maintain the high performance at continuously electrolysis for more than 300 h,or for more than 50 cycles,even repeated operation and storage for more than 2 years.This work provides a promising candidate and new insight to construct industrially viable stable Bi-based catalyst for formate electrosynthesis.
基金financially supported by the National Key Research&Development Program of China(Nos.2020YFB2008300,2020YFB2008303)。
文摘Titanium matrix composites reinforced with ceramic particles are considered a promising engineering material due to their combination of high specific strength,low density,and high modulus.In this study,the TA15-based composites reinforced with a volume fraction of 10% to 25%(TiB+TiC)were prepared using powder metallurgy and casting technique.Microstructural characterization and phase constitution were examined using optical microscopy(OM),scanning electron microscopy(SEM),and X-ray diffraction(XRD).In addition,the microhardness,room temperature(RT)and high temperature(HT)tensile properties of the composites were evaluated.Results revealed that the reinforcements are distributed uniformly even in the composites with a high volume of TiB and TiC.However,as the volume fraction exceeds 15%,TiB and TiC particles become coarsening and exhibit rod-like and dendritic-like morphology.Microhardness increases gradually from 321.2 HV for the base alloy to a maximum of 473.3 HV as the reinforcement increases to 25vol.%.Tensile test results indicate that a reinforcement volume fraction above 20% is beneficial for enhancing tensile strength and yield strength at high temperatures,but it has an adverse effect on room temperature elongation.Conversely,if the reinforcement volume fraction is below 20%,it can improve high-temperature elongation when the temperature exceeds 600℃.
基金Projects(51071107,51001080,51201056)supported by the National Natural Science Foundation of ChinaProject(2010CB934703)supported by the National Basic Research Program of China+1 种基金Project(13211027)supported by Science and Technology Plan Project of Hebei Province,ChinaProject(2011008)supported by Outstanding Youth Science and Technology Innovation Fund of Hebei University of Technology,China
文摘Using nickel catalyst supported on aluminum powders, carbon nanotubes (CNTs) were successfully synthesized in aluminum powders by in-situ chemical vapor deposition at 650 ℃. Structural characterization revealed that the as-grown CNTs possessed higher graphitization degree and straight graphite shell. By this approach, more homogeneous dispersion of CNTs in aluminum powders was achieved compared with the traditional mechanical mixture methods. Using the in-situ synthesized CNTs/Al composite powders and powder metallurgy process, CNTs/Al bulk composites were prepared. Performance testing showed that the mechanical properties and dimensional stability of the composites were improved obviously, which was attributed to the superior dispersion of CNTs in aluminum matrix and the strong interfacial bonding between CNTs and matrix.
基金Project (11JK0799) supported by Scientific Research Program Funded by Shaanxi Provincial Education Department,ChinaProject (KTCQ1-17) supported by Scientific and Technological Innovation and Co-ordination Funded by Science and Technology Department of Shaanxi Province,China
文摘Using titanium wires (99.5%, 200 μm in diameter) as a reactive source, an Al-based composite coating reinforced by titanium tri-aluminide (A13Ti) particles was fabricated by infiltration plus in-situ methods. According to the differential thermal analysis (DTA) curve, the reactive temperature between Ti wires and A1 matrix can be determined at 890 ℃. The obtained composite coatings were characterized by X-ray diffraction (XRD), scanning electron microscopy (SEM), and microhardness and wear test. The experimental results show that when holding period is 20 min at 890℃, the titanium wires react completely to in-situ synthesize Al3Ti particles, which presents blocky and strip-like states. The microhardness of in-situ synthesized Al3Ti particles is about 4.5 times that of the Al-matrix. Under the condition of dry sliding at 10 N load, compared with the unreinforced Al matrix, the composite coating fabricated with 20 min offers unique wear resistance behavior, and its wear mechanism is that the adhesive wear and abrasive wear coexist.
文摘The magnesia -hercynite bricks offer a new lining to rotary cement kiln. They are well adopted and widely used in the high temperature zone of cement kiln, and have obtained good performance at rigorous and severe working conditions. The synthesis of hercynite requires a suitable atmosphere with proper O2 partial pressures which makes sure FeO can stably exist at the synthesizing temperature. Current industrial production of hercynite mainly adopts fused method. The other method, sinte- ring method, is not mature and needs further research. The magnesia - hercynite brick shows high hot toughhess, high adhesion strength to kiln crust, and good corrosion resistance to alkali salt in cement kilns. The mismatching of thermal expansion between magnesia and hercynite can improve the thermal shock resistance of the bricks, but the oxidation of partial Fe^2+ , the high temperature solution, and low temperature exsolution of transgranular secondary spinel lead to cubical expansion, .formation of more cracks, and poor thermal shock resistance of the bricks.
文摘The growth mechanism of reinforcement in in situ synthesized (TiB+TiC)/Ti composites was investigated. The results show that reinforcements nucleate and grow in a way of dissolution precipitation. The morphologies of reinforcements are closely related to the solidification paths and crystal structure of reinforcements. TiB, as a reinforcement, is liable to grow along [010] direction and forms in short fibre shape due to its B27 structure, whereas primary TiC is liable to form composition undercooling and grow in dendritic shape. TiC phases precipitated in binary eutectic and ternary eutectic reactions grow in equiaxial shape. The addition of aluminum element refines TiB and TiC particles, and makes TiC reinforcements grow into the equiaxial particles easily. The addition of graphite adjusts the solidification paths and forms more TiC with dendritic shape. [
文摘Zeolites ZSM-5 with different Si/Al ratios were in-situ synthesized on the surface ofhoneycomb-shaped cordierite support for the first time. Characterizations of XRD and SEM wereperformed and it has been proved that the zeolite ZSM-5 was grown on the surface of the cordieritehomogeneously. NO decomposition on the Cu exchanged ZSM-5/cordierite monolith catalysts wasalso studied. It was found that the monolith catalysts have a fine initial activity at 673K and GHSVof 10,000h-1. Such method should be a good way to make auto exhaust converter with monolithcatalyst for NOx removal.
基金Item Sponsored by National Natural Science Foundation of China (50572005 ,50172006)
文摘A novel technology of tuyere protection is introduced. The ceramic coat .is synthesized by using in-situ combustion process as the internal, external, and nose protecting coat of BF tuyeres. It can effectively protect the tuyeres and reduce heat loss by cooling water. The technglogy is quick-acting, easy to use, energy-saving and can make tuyeres have long service life. The feasibility of the application of the tuyere ceramic coat is discussed and the energy-saving effect of the tuyere is compared with that of the tuyeres lined with refractory.
基金The project was supported by the Natural Science Foundation of Fujian Province (No T08J0129)the Science and Technology Developing Foundation of Fuzhou University (No 2008-XQ-001)2007-year New Century Talents Supporting Program of Fujian Province (No XSJRC2007-17)
文摘Aluminum titanate was in-situ synthesized by using industrial waste-residue in the aluminum factory and TiO2 as the main raw materials and the influence of different reaction temperatures on the purity and microstructures of synthesized products were mainly discussed. The obtained Al2TiO5 was characterized by X-ray diffraction (XRD), scanning electron microscopy (SEM) and relevant analytical software. The results show that elevating the sintering temperature can increase the content of aluminum titanate; and at 1420 ℃, it reaches the highest in the synthesized ceramic. When the sintering temperature continues to increase, the produced aluminum titanate will decompose resulting in the drop of its content. Therefore, the optimum sintering temperature of in-situ synthesis of aluminum titanate is determined as 1420 ℃, at which the grains of aluminum titanate grow completely, the purity of aluminum titanate is 89.3wt%., the highest density is 2.75 g/cm^3, and the porosity is 9%.
基金Project(51574285)supported by the National Natural Science Foundation of China
文摘To improve stability of scorodite,a method of simultaneous synthesis and in-situ coating of scorodite was proposed.Scorodite particles with polyhedral and raspberry-like morphologies were synthesized in an Fe(Ⅱ).As(Ⅴ).H2O system at 90℃and pH 1.5 by blowing oxygen gas into the system.When the initial Fe/As molar ratio exceeded 1:1,a coating of sulfate-containing iron(hydr)oxides formed on the surfaces of scorodite particles during synthesis.To evaluate the leaching stability of synthesized scorodite samples,toxicity characteristic leaching procedure(TCLP)tests were conducted at pH 4.93 for 60 h,and long-term leaching tests were conducted for 30.40 d within a pH range of 5.40.10.88.The leaching results indicated that the release of arsenic from scorodite was noticeably postponed by the coating,and the average arsenic concentrations in the leaching solutions were as low as 0.12 mg/L in the TCLP tests and lower than 0.5 mg/L in the long-term leaching tests.
基金financial support from the National Natural Science Foundation of China(20976077,21076100)the National 973 Foundation of China(2007CB216403)
文摘Para-xylene was chosen as the probe molecule to study adsorption thermodynamics and diffusion kinetics on NaY zeolite and composite structured NaY zeolite synthesized by in-situ crystallization from kaolin microsphere(designated as Na Y/kaolin composites) separately, using a high precision intelligent gravimetric analyzer(IGA). The adsorption isotherms showed normal Langmuir type-Ⅰ behaviors. The increased adsorption heat with an increasing p-xylene coverage supported a mechanism of phase transition, diffusion and re-arrangement of p-xylene molecules during the adsorption process. The rearrangement seemed to be most pronounced at an adsorption loading of 2.13 and 2.29 mmol/g for Na Y zeolite and Na Y/kaolin composites respectively. Compared with Na Y zeolite, a 2—3 times higher in the diffusion coefficient of p-xylene was observed on Na Y/kaolin composites when the pressure was more than 50 Pa. Temperature-programmed desorption(TPD) of p-xylene on two samples from room temperature to 450 ℃ at a special loading has also been investigated by IGA. Results showed only single desorption peak appeared for Na Y zeolite, indicating that adsorption can only occur in the super-cage structure. Comparably, there were two different peaks for in-situ synthesized Na Y zeolite, corresponding to the two thermo desorption processes in both super-cage structure and the channels provided by kaolin, respectively.Key words:
基金Funded by the National 863 High Technology Research Program(No.2007AA03Z548)National Natural Science Foundation of China(No.50971066)+2 种基金Research Fund for the Doctoral Program of Higher Education of China (No.20070299004)Jiangsu Provincial ‘333’ Project of Training the High-level Talents Foundation (No.2008-46)Jiangsu Provincial Science Supporting Item (No.BE2009127)
文摘In-situ TiB2/7055Al nanocomposites are fabricated by in situ melt chemical reaction from 7055Al-K2TiF6-KBF4 system under high intensity ultrasonic field,and the mechanism and kinetic model of in-situ melt chemical reaction are investigated.X-ray diffraction (XRD) and scanning electron microscope (SEM) analyses indicate that the sizes of in-situ TiB2 nanoparticles are in the range of 80-120 nm.The results of ice-water quenched samples show that the whole process contains four stages,and the overall in-situ reaction time is 10 minutes.The in situ synthesis process is controlled mainly by chemical reaction in earlier stage (former 3 minutes),and by the particulate diffusing in later stage.The mechanism of key reaction between Al3Ti and AlB2 under high intensity ultrasonic in the 7055Al-K2TiF6-KBF4 system is the reaction-diffusion-crack-rediffusion.Furthermore,the reactive kinetic models in 7055Al-K2TiF6-KBF4 system are established.
基金Funded by the National Natural Science Foundation of China (No. 50572080)Doctoral Foundation of Wuhan University of Technology (No. 471-38650142)
文摘Ti3SiC2/TiB2 composite was successfully obtained by hot pressing Ti/TiC/Si/B4C power mixtures.Volume fraction of TiB2 in Ti3SiC2/TiB2 composite can not exceed 10%.Incorporation of excessive TiB2 will affect the reactions process.TiC and Ti5Si3 were two important intermediate phases during the whole reactions.The microstructure characteristics of the Ti3SiC2/TiB2 composites were analyzed using scanning electron microscopy (SEM) and transmission electron microscopy (TEM).The experimental results show that the grains of Ti3SiC2/TiB2 composite are structured in a layered form,and the formation of TiB2 particles as reinforcements with elongated or equiaxed shape distributes in Ti3SiC2 matrix.
基金High-Tech Research of Boron Industry in Liaoning Province (PYF098)Scientific Research Special Found of Doctor Subject of Chinese University (20030145015)
文摘CeB6/B4C ceramic composite was fabricated by hot-pressed sintering via in-situ synthesis reaction among B4C, CeOand C. The effects of CeB6 content on the performance and microstructure of CeB6/B4C composites were investigated. As the content of CeB6 was 2.42%, the microhardness of CeB6/B4C composite reached the maximum of 40.64 GPa, which was higher than that of monolithic B4C by 52.5%. As the content of CeB6 was 4.89%, the flexibility strength and the fracture toughness of CeB6/B4C composite reached the peak values of 346.7 MPa and 5.95 MPa·m1/2 respectively, which were higher than those of monolithic B4C by 17.96% and 61.7% respectively. The integrated mechanical property of CeB6/B4C ceramic composite with the 4.89% CeB6 content is optimal. It was also found that as in-situ synthesis of CeB6, the crystal grain growth was inhibited, and crystallite arrangement was so compact that the pores gradually reduced. The main fracture mode of CeB6/B4C ceramic composite was intercrystalline rupture, while the transcrystalline rupture was minor.
基金the financial support from National Natural Science Foundation of China(20776124 and 20736011)
文摘ZSM-5 zeolite was in-situ synthesized from metakaolin or s alumina sources, respectively. The ZSM-5 zeolite was characterized pinel by incorporating additional silica and by X-ray diffractometry (XRD), scanning electron microscopy (SEM), Fourier transform infrared (FT-IR) spectroscopy and N2 adsorption measurement. This supported zeolite was tested on the methanol to propylene (MTP) processes. Experimental results showed that the ZSM-5 zeolite exhibited high selectivity for propylene. The yield of propylene on ZSM-5 zeolite made from metakaolin was increased by 17.73%, while that on ZSM-5 zeolite made from spinel was raised by 9.90%, compared to that achieved with the commercial ZSM-5 zeolite. The significant increase in propylene production is probably due to the distinctive morphology of the ZSM-5 zeolite, which possessed a rough external surface covered with sphere-like particles and distribution of small crystals sized at around 400--500 nm. This morphology could help to generate more crystal defects so that more active centers could be exposed to the reaction mixture. In addition, the zeolite product had a gradient pore distribution and many medium Brǒnsted acid sites, both of which might also contribute to the increased propylene production.
基金FinanciallysupportedbytheNationalNaturalScienceFoundationofChina (No .5 0 2 76 0 2 3)
文摘By means of an inherent elevated-temperature of poured liquid steel,a Ti-C-30wt%Fe preform,which was pre-placed in a mould cavity,was directly ignited and a combustion synthesis reaction took place.As a result,a TiC-Fe cermet coating with a thickness of about 10mm was simultaneously synthesized on the solidified steel matrix.The synthesized coating exhibits a feature of graded composite structure,in which both the amount and size of TiC particles decrease gradually with an increasing distance from the furface of the coating.Moreover,by a proper casting technique,the pores formed during the combustion synthesis of the preform could be centrally distributed in 2-3mm in outer layer of the coating.When this outer porous layer was worn off,the rest coating with a thickness of about 8mm possesses a dense structure and a high abrasive wear resistance.
基金the financial support provided by the National Natural Science Foundation of China(No.11872013)。
文摘Copper azide with high density was successfully synthesized by in-situ reaction of nanoporous copper(NPC)precursor with HN_(3) gaseous.NPC with pore size of about 529 nm has been prepared by electroless plating using polystyrene(PS)as templates.The copper shells thickness of NPC was controlled by adjusting the PS loading amount.The effects of copper shell on the morphology,structure and density of copper azide were investigated.The conversion increased from 87.12%to 95.31%when copper shell thickness decrease from 100 to 50 nm.Meanwhile,the density of copper azide prepared by 529 nm NPC for 24 h was up to 2.38 g/cm^(3).The hollow structure of this NPC was filled by swelling of copper azide which guaranteed enough filling volume for keeping the same shape as well as improving the charge density.Moreover,HNS-IV explosive was successfully initiated by copper azide with minimum charge thickness of 0.55 mm,showing that copper azide prepared has excellent initiation performance,which has more advantages in the application of miniaturized explosive systems.
基金supported by the National Scientific Foundation of China(NSFC,Project no.21306119)the Provincial Natural Science Foundation of Sichuan(2013FZ0034 and 2013JY0150)the Outstanding Young Scientist Foundation of Sichuan University(2013SCU04A23)
文摘The whole performance of the networked control system (NCSs) depends on two interaction factors, namely the quality of control performance (QoP) and quality of network service (QoS). So, to optimize the whole perfor-mance of NCSs, the problem of guaranteeing QoP and QoS plays an important role in the design of NCSs. However, up to now, little work has been done in this field. In this paper, a synthesizing control model of NCSs to guarantee QoP and QoS is proposed, and a feasible condition of optimizing whole performance of NCSs is also suggested. Finally, the simulation results show that the proposed model is effective.
文摘In-situ 5 vol.pct TiB whiskers and TiC particulates reinforced Ti composites were fabricated by blending Ti powderand B4C particulates followed by reactive hot-pressing. The microstructure of the composites was investigated byusing differential scanning calorimetry (DSC), X-ray diffraction (XRD), transmission electron microscope (TEM)and scanning electron microscope (SEM). The results showed that the reactive temperature between Ti and B4C isabove 570°. Two kinds of reinforcements with different shapes were formed during hot-pressing: TiB short-fiber andequiaxed TiC particles. The interracial bonding between the reinforcements and Ti matrix is perfect. No interracialreaction between reinforcements and Ti matrix was found.