On-line measurement for dielectric loss angle can effectively monitor the insulation condition of capacitive equipment in power systems. Synthetic relative measuring methods not only markedly overcome the shortcomings...On-line measurement for dielectric loss angle can effectively monitor the insulation condition of capacitive equipment in power systems. Synthetic relative measuring methods not only markedly overcome the shortcomings of traditional absolute measuring methods but also greatly improve the accuracy of dielectric loss angle measurement. However, synthetic relative measuring methods based on two or three pieces of capacitive equipment do not have the characteristic of generality. In this paper, a principle of synthetic relative measuring method is presented. The example of application for synthetic relative methods based on three and four pieces of capacitive equipment running in the same phase is taken to present the failure judgment matrices for N pieces of equipment. According to these matrices, the fault condition of N pieces of capacitive equipment can be watched, which is more general. Then some problems needing to be concerned along with two diagnostic methods used in diagnostic system are introduced. Finally, two programmable flow charts for the two methods are given and corresponding examples demonstrate their feasibility in practice.展开更多
文摘On-line measurement for dielectric loss angle can effectively monitor the insulation condition of capacitive equipment in power systems. Synthetic relative measuring methods not only markedly overcome the shortcomings of traditional absolute measuring methods but also greatly improve the accuracy of dielectric loss angle measurement. However, synthetic relative measuring methods based on two or three pieces of capacitive equipment do not have the characteristic of generality. In this paper, a principle of synthetic relative measuring method is presented. The example of application for synthetic relative methods based on three and four pieces of capacitive equipment running in the same phase is taken to present the failure judgment matrices for N pieces of equipment. According to these matrices, the fault condition of N pieces of capacitive equipment can be watched, which is more general. Then some problems needing to be concerned along with two diagnostic methods used in diagnostic system are introduced. Finally, two programmable flow charts for the two methods are given and corresponding examples demonstrate their feasibility in practice.