The synthetic tidal parameters with high spatial resolution for gravity over China and its neighbor area are constructed with Earth's tidal model and ocean tide loading calculated using TPXO7 global ocean tide model ...The synthetic tidal parameters with high spatial resolution for gravity over China and its neighbor area are constructed with Earth's tidal model and ocean tide loading calculated using TPXO7 global ocean tide model as well as tidal data over China seas. The comparison between synthetic parameters and ones observed by spring gravimeters at some seismic network stations and Hong Kong station and one observed by super-conducting gravimeter at Wuhan station shows that the average differences in amplitude factors and phases are smaller than 0.005 and 0.5° respectively; and that the discrepancies between observational and synthetic parameters are dependent on gravimetric technique in that the synthetic parameters are in well agreement with the superconducting gravimetric observations. This also indicates that the synthetic result is a good estimation for tidal gravity, and the numerical results in the present paper not only can provide ground and space gravimetry such as absolute gravimetry with correction model of tidal gravity, but also provide effective tidal parameters over areas where no observation is carried out.展开更多
An expression of correlating parameter is developed which can be used to synthetically express the close combat maneuverability of fighters by the method of fuzzy mathematics. On the basis of analysis of fighter maneu...An expression of correlating parameter is developed which can be used to synthetically express the close combat maneuverability of fighters by the method of fuzzy mathematics. On the basis of analysis of fighter maneuvering performances, this paper proposes the parameters ωA,ωs, and SEP to measure the maneuvering performances. The linear weighted method, which is one of the basic methods of transforming several objects to a single object in mathematics programming, is used to determine the form of the correlating parameter expression. The focal point of this paper's work is to determine the weight coefficients of maneuvering performances in the expression. In order to solve this problem, the inverse problem of synthetic judgement in fuzzy mathematics is employed. The development of the equation of fuzzy relationship in this paper is based on the judgement data, which are gathered from many experts working in aeronautical field. Therefore, the expression of correlating parameter developed by this paper can be used in the design object at aircraft conceptual design stage and the judgement of synthetical measurement of the maneuverability of fighters.展开更多
Estimating cross-range velocity is a challenging task for space-borne synthetic aperture radar(SAR), which is important for ground moving target indication(GMTI). Because the velocity of a target is very small com...Estimating cross-range velocity is a challenging task for space-borne synthetic aperture radar(SAR), which is important for ground moving target indication(GMTI). Because the velocity of a target is very small compared with that of the satellite, it is difficult to correctly estimate it using a conventional monostatic platform algorithm. To overcome this problem, a novel method employing multistatic SAR is presented in this letter. The proposed hybrid method, which is based on an extended space-time model(ESTIM) of the azimuth signal, has two steps: first, a set of finite impulse response(FIR) filter banks based on a fractional Fourier transform(FrFT) is used to separate multiple targets within a range gate; second, a cross-correlation spectrum weighted subspace fitting(CSWSF) algorithm is applied to each of the separated signals in order to estimate their respective parameters. As verified through computer simulation with the constellations of Cartwheel, Pendulum and Helix, this proposed time-frequency-subspace method effectively improves the estimation precision of the cross-range velocities of multiple targets.展开更多
基金The Knowledge Innovation Program of the Chinese Academy of Sciences (KZCX2-YW-133)National Nature Science Foundation of China (40730316, 40574034).
文摘The synthetic tidal parameters with high spatial resolution for gravity over China and its neighbor area are constructed with Earth's tidal model and ocean tide loading calculated using TPXO7 global ocean tide model as well as tidal data over China seas. The comparison between synthetic parameters and ones observed by spring gravimeters at some seismic network stations and Hong Kong station and one observed by super-conducting gravimeter at Wuhan station shows that the average differences in amplitude factors and phases are smaller than 0.005 and 0.5° respectively; and that the discrepancies between observational and synthetic parameters are dependent on gravimetric technique in that the synthetic parameters are in well agreement with the superconducting gravimetric observations. This also indicates that the synthetic result is a good estimation for tidal gravity, and the numerical results in the present paper not only can provide ground and space gravimetry such as absolute gravimetry with correction model of tidal gravity, but also provide effective tidal parameters over areas where no observation is carried out.
文摘An expression of correlating parameter is developed which can be used to synthetically express the close combat maneuverability of fighters by the method of fuzzy mathematics. On the basis of analysis of fighter maneuvering performances, this paper proposes the parameters ωA,ωs, and SEP to measure the maneuvering performances. The linear weighted method, which is one of the basic methods of transforming several objects to a single object in mathematics programming, is used to determine the form of the correlating parameter expression. The focal point of this paper's work is to determine the weight coefficients of maneuvering performances in the expression. In order to solve this problem, the inverse problem of synthetic judgement in fuzzy mathematics is employed. The development of the equation of fuzzy relationship in this paper is based on the judgement data, which are gathered from many experts working in aeronautical field. Therefore, the expression of correlating parameter developed by this paper can be used in the design object at aircraft conceptual design stage and the judgement of synthetical measurement of the maneuverability of fighters.
基金supported by the National Natural Science Foundation of China (No. 61271343)the Research Fund for the Doctoral Program of Higher Education of China (No. 20122302110012)the 2014 Innovation of Science and Technology Program of China Aerospace Science and Technology Corporation
文摘Estimating cross-range velocity is a challenging task for space-borne synthetic aperture radar(SAR), which is important for ground moving target indication(GMTI). Because the velocity of a target is very small compared with that of the satellite, it is difficult to correctly estimate it using a conventional monostatic platform algorithm. To overcome this problem, a novel method employing multistatic SAR is presented in this letter. The proposed hybrid method, which is based on an extended space-time model(ESTIM) of the azimuth signal, has two steps: first, a set of finite impulse response(FIR) filter banks based on a fractional Fourier transform(FrFT) is used to separate multiple targets within a range gate; second, a cross-correlation spectrum weighted subspace fitting(CSWSF) algorithm is applied to each of the separated signals in order to estimate their respective parameters. As verified through computer simulation with the constellations of Cartwheel, Pendulum and Helix, this proposed time-frequency-subspace method effectively improves the estimation precision of the cross-range velocities of multiple targets.