期刊文献+
共找到2篇文章
< 1 >
每页显示 20 50 100
Power System Stability Improvement by Using STATCOM with POC & Excitation Controller
1
作者 Zannat-E-Noor Manik Mia +1 位作者 Atiqur Rahman Sohel Hossain 《Computer Technology and Application》 2013年第12期643-648,共6页
This paper presents the model of a static synchronous condenser (STATCOM) which is controlled externally by a newly designed power oscillation controller (POC) for the improvements of power system stability and da... This paper presents the model of a static synchronous condenser (STATCOM) which is controlled externally by a newly designed power oscillation controller (POC) for the improvements of power system stability and damping effect of an on line power system. The proposed POC consists of two controllers (power oscillation damping & proportional integral derivative PID & POD). PID parameters have been optimized by Zigler Necles close loop tuning method. Machine excitation has been controller by using excitation controller as required. Both single phase and three phase faults has been considered in the research. In this paper, a power system network is considered which is simulated in the phasor simulation method & the network is simulated in three steps: without STATCOM, with STATCOM but no externally controlled, STATCOM with POC. Simulation result shows that without STATCOM, the system parameters become unstable during faults. When STATCOM is imposed in the network, then system parameters become stable. Again, when STATCOM is controlled externally by POC controllers, then system voltage & power becomes stable in faster way then without controller It has been observed that the STATCOM ratings are only 20 MVA with controllers and 200 MVA without controllers. Therefore, STATCOM with POC controllers are more effective to enhance the voltage stability and increases power transmission capacity of a power system. So STATCOM with POC & excitation controllers, the system performance is greatly enhanced. 展开更多
关键词 STATCOM voltage regulator power system controller PID POD POC and MATLAB simulink.
下载PDF
Dynamic stability enhancement of interconnected multi-source power systems using hierarchical ANFIS controller-TCSC based on multi-objective PSO 被引量:1
2
作者 Ali Darvish FALEHI Ali MOSALLANEJAD 《Frontiers of Information Technology & Electronic Engineering》 SCIE EI CSCD 2017年第3期394-409,共16页
Suppression of the dynamic oscillations of tie-line power exchanges and frequency in the affected interconnected power systems due to loading-condition changes has been assigned as a prominent duty of automatic genera... Suppression of the dynamic oscillations of tie-line power exchanges and frequency in the affected interconnected power systems due to loading-condition changes has been assigned as a prominent duty of automatic generation control(AGC). To alleviate the system oscillation resulting from such load changes, implementation of flexible AC transmission systems(FACTSs) can be considered as one of the practical and effective solutions. In this paper, a thyristor-controlled series compensator(TCSC), which is one series type of the FACTS family, is used to augment the overall dynamic performance of a multi-area multi-source interconnected power system. To this end, we have used a hierarchical adaptive neuro-fuzzy inference system controller-TCSC(HANFISC-TCSC) to abate the two important issues in multi-area interconnected power systems, i.e., low-frequency oscillations and tie-line power exchange deviations. For this purpose, a multi-objective optimization technique is inevitable. Multi-objective particle swarm optimization(MOPSO) has been chosen for this optimization problem, owing to its high performance in untangling non-linear objectives. The efficiency of the suggested HANFISC-TCSC has been precisely evaluated and compared with that of the conventional MOPSO-TCSC in two different multi-area interconnected power systems, i.e., two-area hydro-thermal-diesel and three-area hydro-thermal power systems. The simulation results obtained from both power systems have transparently certified the high performance of HANFISC-TCSC compared to the conventional MOPSO-TCSC. 展开更多
关键词 Hierarchical adaptive neuro-fuzzy inference system controller(HANFISC) Thyristor-controlled series compensator(TCSC) Automatic generation control(AGC) Multi-objective particle swarm optimization(MOPSO) Power system dynamic stability Interconnected multi-source power systems
原文传递
上一页 1 下一页 到第
使用帮助 返回顶部