The mathematical model of hydraulic drive unit of quadruped robot was built in this paper. According to the coupling characteristics between position control system and force control system, the decoupling control str...The mathematical model of hydraulic drive unit of quadruped robot was built in this paper. According to the coupling characteristics between position control system and force control system, the decoupling control strategy was realized based on diagonal matrix method in AMESim?. The results of simulation show that using diagonal matrix method can achieve the decoupling control effectively and it can achieve the decoupling control more effectively with the method of not offset pole-zero in the S coordinate. This research can provide theoretical basis for the application of test system of hydraulic drive unit.展开更多
In this paper, by defining new state vectors and developing new transfer matrices of various elements mov- ing in space, the discrete time transfer matrix method of multi-rigid-flexible-body system is expanded to stud...In this paper, by defining new state vectors and developing new transfer matrices of various elements mov- ing in space, the discrete time transfer matrix method of multi-rigid-flexible-body system is expanded to study the dynamics of multibody system with flexible beams moving in space. Formulations and numerical example of a rigid- flexible-body three pendulums system moving in space are given to validate the method. Using the new method to study the dynamics of multi-rigid-flexible-body system mov- ing in space, the global dynamics equations of system are not needed, the orders of involved matrices of the system are very low and the computational speed is high, irrespec- tive of the size of the system. The new method is simple, straightforward, practical, and provides a powerful tool for multi-rigid-flexible-body system dynamics.展开更多
A new matrix perturbation analysis method is presented for efficient approximate solution of the complex modal quadratic generalized eigenvalue problem of viscously damped linear vibration systems. First, the damping ...A new matrix perturbation analysis method is presented for efficient approximate solution of the complex modal quadratic generalized eigenvalue problem of viscously damped linear vibration systems. First, the damping matrix is decomposed into the sum of a proportional-and a nonproportional-damping parts, and the solutions of the real modal eigenproblem with the proportional dampings are determined, which are a set of initial approximate solutions of the complex modal eigenproblem. Second, by taking the nonproportional-damping part as a small modification to the proportional one and using the matrix perturbation analysis method, a set of approximate solutions of the complex modal eigenvalue problem can be obtained analytically. The result is quite simple. The new method is applicable to the systems with viscous dampings-which do not deviate far away from the proportional-damping case. It is particularly important that the solution technique be also effective to the systems with heavy, but not over, dampings. The solution formulas of complex modal eigenvlaues and eigenvectors are derived up to second-order perturbation terms. The effectiveness of the perturbation algorithm is illustrated by an exemplar numerical problem with heavy dampings. In addition, the practicability of approximately estimating the complex modal eigenvalues, under the proportional-damping hypothesis, of damped vibration systems is discussed by several numerical examples.展开更多
In this study, the Bernstein collocation method has been expanded to Stancu collocation method for numerical solution of the charged particle motion for certain configurations of oscillating magnetic fields modelled b...In this study, the Bernstein collocation method has been expanded to Stancu collocation method for numerical solution of the charged particle motion for certain configurations of oscillating magnetic fields modelled by a class of linear integro-differential equations. As the method has been improved, the Stancu polynomials that are generalization of the Bernstein polynomials have been used. The method has been tested on a physical problem how the method can be applied. Moreover, numerical results of the method have been compared with the numerical results of the other methods to indicate the efficiency of the method.展开更多
The inversion of a non-singular square matrix applying a Computer Algebra System (CAS) is straightforward. The CASs make the numeric computation efficient but mock the mathematical characteristics. The algorithms cond...The inversion of a non-singular square matrix applying a Computer Algebra System (CAS) is straightforward. The CASs make the numeric computation efficient but mock the mathematical characteristics. The algorithms conducive to the output are sealed and inaccessible. In practice, other than the CPU timing, the applied inversion method is irrelevant. This research-oriented article discusses one such process, the Cayley-Hamilton (C.H.) [1]. Pursuing the process symbolically reveals its unpublished hidden mathematical characteristics even in the original article [1]. This article expands the general vision of the original named method without altering its practical applications. We have used the famous CAS Mathematica [2]. We have briefed the theory behind the method and applied it to different-sized symbolic and numeric matrices. The results are compared to the named CAS’s sealed, packaged library commands. The codes are given, and the algorithms are unsealed.展开更多
Recently we have developed an eigenvector method (EVM) which can achieve the blind deconvolution (BD) for MIMO systems. One of attractive features of the proposed algorithm is that the BD can be achieved by calculatin...Recently we have developed an eigenvector method (EVM) which can achieve the blind deconvolution (BD) for MIMO systems. One of attractive features of the proposed algorithm is that the BD can be achieved by calculating the eigenvectors of a matrix relevant to it. However, the performance accuracy of the EVM depends highly on computational results of the eigenvectors. In this paper, by modifying the EVM, we propose an algorithm which can achieve the BD without calculating the eigenvectors. Then the pseudo-inverse which is needed to carry out the BD is calculated by our proposed matrix pseudo-inversion lemma. Moreover, using a combination of the conventional EVM and the modified EVM, we will show its performances comparing with each EVM. Simulation results will be presented for showing the effectiveness of the proposed methods.展开更多
In this paper, we set up a general framework of parallel matrix mullisplitting relaxation methods for solving large scale system of linear equations. We investigate the convergence properties of this framework and giv...In this paper, we set up a general framework of parallel matrix mullisplitting relaxation methods for solving large scale system of linear equations. We investigate the convergence properties of this framework and give several sufficient conditions ensuring it to converge as well as diverge. At last, we conclude a necessary and sufficient condition for the convergence of this framework when the coefficient matrix is an L-matrix.展开更多
A practical calibration method is proposed for instantaneous polarization radar systems.The method only needs one measurement by using a metal sphere.The distortions of system and the actual polarization scattering ma...A practical calibration method is proposed for instantaneous polarization radar systems.The method only needs one measurement by using a metal sphere.The distortions of system and the actual polarization scattering matrix(PSM)of target can be obtained.First,an instantaneous polarization radar system is presented.The system can obtain PSM by a single pulse echo.The dual-polarization antenna can transmit and receive two orthogonal polarization waves.The multilayer micro-strip patch antenna is adopted for this kind of radar system.Second,based on the multi-port network theory,the operation and system errors of instantaneous polarization radar system are analyzed.By making assumption on the cross-talk factors of antenna,distortion matrices of R and Tare derived.Finally,the calibration method based on instantaneous polarization measurement is introduced.Simulation results show the performance of this calibration method.The values of calibrated PSM are in agreement with the actual ones after calibration.展开更多
The introduced method in this paper consists of reducing a system of integro-differential equations into a system of algebraic equations, by expanding the unknown functions, as a series in terms of Chebyshev wavelets ...The introduced method in this paper consists of reducing a system of integro-differential equations into a system of algebraic equations, by expanding the unknown functions, as a series in terms of Chebyshev wavelets with unknown coefficients. Extension of Chebyshev wavelets method for solving these systems is the novelty of this paper. Some examples to illustrate the simplicity and the effectiveness of the proposed method have been presented.展开更多
This paper presents a high order symplectic con- servative perturbation method for linear time-varying Hamil- tonian system. Firstly, the dynamic equation of Hamilto- nian system is gradually changed into a high order...This paper presents a high order symplectic con- servative perturbation method for linear time-varying Hamil- tonian system. Firstly, the dynamic equation of Hamilto- nian system is gradually changed into a high order pertur- bation equation, which is solved approximately by resolv- ing the Hamiltonian coefficient matrix into a "major compo- nent" and a "high order small quantity" and using perturba- tion transformation technique, then the solution to the orig- inal equation of Hamiltonian system is determined through a series of inverse transform. Because the transfer matrix determined by the method in this paper is the product of a series of exponential matrixes, the transfer matrix is a sym- plectic matrix; furthermore, the exponential matrices can be calculated accurately by the precise time integration method, so the method presented in this paper has fine accuracy, ef- ficiency and stability. The examples show that the proposed method can also give good results even though a large time step is selected, and with the increase of the perturbation or- der, the perturbation solutions tend to exact solutions rapidly.展开更多
In 1982, Professor Fang Guoliang found the "Non full resonance" phenomenon in a tool system while he use the thin-long tool ultrasonically machining deep-small hole. He called it as "local resonance&quo...In 1982, Professor Fang Guoliang found the "Non full resonance" phenomenon in a tool system while he use the thin-long tool ultrasonically machining deep-small hole. He called it as "local resonance". Also this "Non full resonance" phenomenon was discovered in the ultrasonic drilling and the ultrasonic honing system later. To its mechanism, professor Fang thought that the coupling of long-thin tool bar and driving system is weak, so the tool bar can vibrate independently, but the quantitative relation between the coupling factor and diameter ratio is not made certain. Then several theories come forth to interpret it but still haven’t a common conclusion. Through the systematic experimental and theoretical research, this paper reveals that the "local resonance" phenomenon of ultrasonic honing system has the same essence with the "local resonance" phenomenon in deep hole machining system: when the section area ratio of tool bar and driving system is small enough, some resonance frequencies of combined system are close to the resonance frequencies of "fixed-free" state tool bar, the combined system is still resonant. According to the given depth of hole and structure size, we can use the transfer matrix deduced in this paper to design flexible bar and oilstone seat not only satisfying mechanical structure size but also achieving enough magnitude. It greatly simplified the design. This new method can be named as "local resonance" design method for ultrasonic honing system. The experiment, deduction and design method have a certain common meaning to the study and design of other ultrasonic system.展开更多
The research on multiple launch rocket system(MLRS)is now even more demanding in terms of reducing the time for dynamic calculations and improving the firing accuracy,keeping the cost as low as possible.This study emp...The research on multiple launch rocket system(MLRS)is now even more demanding in terms of reducing the time for dynamic calculations and improving the firing accuracy,keeping the cost as low as possible.This study employs multibody system transfer matrix method(MSTMM),to model MLRS.The use of this method provides effective and fast calculations of dynamic characteristics,initial disturbance and firing accuracy.Further,a new method of rapid extrapolation of ballistic trajectory of MLRS is proposed by using the position information of radar tests.That extrapolation point is then simulated and compared with the actual results,which demonstrates a good agreement.The closed?loop fire correction method is used to improve the firing accuracy of MLRS at low cost.展开更多
Effect of residual Doppler averaging on the probe absorption in an alkali vapor medium in the presence of a coherent pump beam is studied analytically for the Ξ type system. A coherent probe field is assumed to conne...Effect of residual Doppler averaging on the probe absorption in an alkali vapor medium in the presence of a coherent pump beam is studied analytically for the Ξ type system. A coherent probe field is assumed to connect the ground level with the intermediate level whereas a coherent control beam is supposed to act between the intermediate energy level and the uppermost level. Optical Bloch equations(OBE) for a three-level Ξ type system and a four-level Ξ type system are derived by using density matrix formalism. These equations are solved by an analytic method to determine the probe response, which not only depends on the wavelength difference between the control(pump) field and the probe field but shows substantially different features depending on whether the wavelength of the control field is greater than that of the probe field or the reverse. The effect of temperature on probe response is also shown. Enhancement in probe absorption and additional features are noticed under a strong probe limit at room temperature. The four-level Ξ type system has two ground levels and this leads to substantial modification in the simulated probe absorption as compared to the three-level system.展开更多
文摘The mathematical model of hydraulic drive unit of quadruped robot was built in this paper. According to the coupling characteristics between position control system and force control system, the decoupling control strategy was realized based on diagonal matrix method in AMESim?. The results of simulation show that using diagonal matrix method can achieve the decoupling control effectively and it can achieve the decoupling control more effectively with the method of not offset pole-zero in the S coordinate. This research can provide theoretical basis for the application of test system of hydraulic drive unit.
基金supported by the Natural Science Foundation of China Government (10902051)the Natural Science Foundation of Jiangsu Province (BK2008046)the German Science Foundation
文摘In this paper, by defining new state vectors and developing new transfer matrices of various elements mov- ing in space, the discrete time transfer matrix method of multi-rigid-flexible-body system is expanded to study the dynamics of multibody system with flexible beams moving in space. Formulations and numerical example of a rigid- flexible-body three pendulums system moving in space are given to validate the method. Using the new method to study the dynamics of multi-rigid-flexible-body system mov- ing in space, the global dynamics equations of system are not needed, the orders of involved matrices of the system are very low and the computational speed is high, irrespec- tive of the size of the system. The new method is simple, straightforward, practical, and provides a powerful tool for multi-rigid-flexible-body system dynamics.
文摘A new matrix perturbation analysis method is presented for efficient approximate solution of the complex modal quadratic generalized eigenvalue problem of viscously damped linear vibration systems. First, the damping matrix is decomposed into the sum of a proportional-and a nonproportional-damping parts, and the solutions of the real modal eigenproblem with the proportional dampings are determined, which are a set of initial approximate solutions of the complex modal eigenproblem. Second, by taking the nonproportional-damping part as a small modification to the proportional one and using the matrix perturbation analysis method, a set of approximate solutions of the complex modal eigenvalue problem can be obtained analytically. The result is quite simple. The new method is applicable to the systems with viscous dampings-which do not deviate far away from the proportional-damping case. It is particularly important that the solution technique be also effective to the systems with heavy, but not over, dampings. The solution formulas of complex modal eigenvlaues and eigenvectors are derived up to second-order perturbation terms. The effectiveness of the perturbation algorithm is illustrated by an exemplar numerical problem with heavy dampings. In addition, the practicability of approximately estimating the complex modal eigenvalues, under the proportional-damping hypothesis, of damped vibration systems is discussed by several numerical examples.
文摘In this study, the Bernstein collocation method has been expanded to Stancu collocation method for numerical solution of the charged particle motion for certain configurations of oscillating magnetic fields modelled by a class of linear integro-differential equations. As the method has been improved, the Stancu polynomials that are generalization of the Bernstein polynomials have been used. The method has been tested on a physical problem how the method can be applied. Moreover, numerical results of the method have been compared with the numerical results of the other methods to indicate the efficiency of the method.
文摘The inversion of a non-singular square matrix applying a Computer Algebra System (CAS) is straightforward. The CASs make the numeric computation efficient but mock the mathematical characteristics. The algorithms conducive to the output are sealed and inaccessible. In practice, other than the CPU timing, the applied inversion method is irrelevant. This research-oriented article discusses one such process, the Cayley-Hamilton (C.H.) [1]. Pursuing the process symbolically reveals its unpublished hidden mathematical characteristics even in the original article [1]. This article expands the general vision of the original named method without altering its practical applications. We have used the famous CAS Mathematica [2]. We have briefed the theory behind the method and applied it to different-sized symbolic and numeric matrices. The results are compared to the named CAS’s sealed, packaged library commands. The codes are given, and the algorithms are unsealed.
文摘Recently we have developed an eigenvector method (EVM) which can achieve the blind deconvolution (BD) for MIMO systems. One of attractive features of the proposed algorithm is that the BD can be achieved by calculating the eigenvectors of a matrix relevant to it. However, the performance accuracy of the EVM depends highly on computational results of the eigenvectors. In this paper, by modifying the EVM, we propose an algorithm which can achieve the BD without calculating the eigenvectors. Then the pseudo-inverse which is needed to carry out the BD is calculated by our proposed matrix pseudo-inversion lemma. Moreover, using a combination of the conventional EVM and the modified EVM, we will show its performances comparing with each EVM. Simulation results will be presented for showing the effectiveness of the proposed methods.
基金Supported by Natural Science Fundations of China and Shanghai.
文摘In this paper, we set up a general framework of parallel matrix mullisplitting relaxation methods for solving large scale system of linear equations. We investigate the convergence properties of this framework and give several sufficient conditions ensuring it to converge as well as diverge. At last, we conclude a necessary and sufficient condition for the convergence of this framework when the coefficient matrix is an L-matrix.
文摘A practical calibration method is proposed for instantaneous polarization radar systems.The method only needs one measurement by using a metal sphere.The distortions of system and the actual polarization scattering matrix(PSM)of target can be obtained.First,an instantaneous polarization radar system is presented.The system can obtain PSM by a single pulse echo.The dual-polarization antenna can transmit and receive two orthogonal polarization waves.The multilayer micro-strip patch antenna is adopted for this kind of radar system.Second,based on the multi-port network theory,the operation and system errors of instantaneous polarization radar system are analyzed.By making assumption on the cross-talk factors of antenna,distortion matrices of R and Tare derived.Finally,the calibration method based on instantaneous polarization measurement is introduced.Simulation results show the performance of this calibration method.The values of calibrated PSM are in agreement with the actual ones after calibration.
文摘The introduced method in this paper consists of reducing a system of integro-differential equations into a system of algebraic equations, by expanding the unknown functions, as a series in terms of Chebyshev wavelets with unknown coefficients. Extension of Chebyshev wavelets method for solving these systems is the novelty of this paper. Some examples to illustrate the simplicity and the effectiveness of the proposed method have been presented.
基金supported by the National Natural Science Foun-dation of China (11172334)
文摘This paper presents a high order symplectic con- servative perturbation method for linear time-varying Hamil- tonian system. Firstly, the dynamic equation of Hamilto- nian system is gradually changed into a high order pertur- bation equation, which is solved approximately by resolv- ing the Hamiltonian coefficient matrix into a "major compo- nent" and a "high order small quantity" and using perturba- tion transformation technique, then the solution to the orig- inal equation of Hamiltonian system is determined through a series of inverse transform. Because the transfer matrix determined by the method in this paper is the product of a series of exponential matrixes, the transfer matrix is a sym- plectic matrix; furthermore, the exponential matrices can be calculated accurately by the precise time integration method, so the method presented in this paper has fine accuracy, ef- ficiency and stability. The examples show that the proposed method can also give good results even though a large time step is selected, and with the increase of the perturbation or- der, the perturbation solutions tend to exact solutions rapidly.
文摘In 1982, Professor Fang Guoliang found the "Non full resonance" phenomenon in a tool system while he use the thin-long tool ultrasonically machining deep-small hole. He called it as "local resonance". Also this "Non full resonance" phenomenon was discovered in the ultrasonic drilling and the ultrasonic honing system later. To its mechanism, professor Fang thought that the coupling of long-thin tool bar and driving system is weak, so the tool bar can vibrate independently, but the quantitative relation between the coupling factor and diameter ratio is not made certain. Then several theories come forth to interpret it but still haven’t a common conclusion. Through the systematic experimental and theoretical research, this paper reveals that the "local resonance" phenomenon of ultrasonic honing system has the same essence with the "local resonance" phenomenon in deep hole machining system: when the section area ratio of tool bar and driving system is small enough, some resonance frequencies of combined system are close to the resonance frequencies of "fixed-free" state tool bar, the combined system is still resonant. According to the given depth of hole and structure size, we can use the transfer matrix deduced in this paper to design flexible bar and oilstone seat not only satisfying mechanical structure size but also achieving enough magnitude. It greatly simplified the design. This new method can be named as "local resonance" design method for ultrasonic honing system. The experiment, deduction and design method have a certain common meaning to the study and design of other ultrasonic system.
基金Supported by National Natural Science Foundation of China(60574011)
Acknowledgement The authors would like to thank Professor YANG Guang-Hong for his guidance.
基金supported by the Na- tional Natural Science Foundation of China (No. 11472135)the Science Challenge Project (No. JCKY2016212A506- 0104)
文摘The research on multiple launch rocket system(MLRS)is now even more demanding in terms of reducing the time for dynamic calculations and improving the firing accuracy,keeping the cost as low as possible.This study employs multibody system transfer matrix method(MSTMM),to model MLRS.The use of this method provides effective and fast calculations of dynamic characteristics,initial disturbance and firing accuracy.Further,a new method of rapid extrapolation of ballistic trajectory of MLRS is proposed by using the position information of radar tests.That extrapolation point is then simulated and compared with the actual results,which demonstrates a good agreement.The closed?loop fire correction method is used to improve the firing accuracy of MLRS at low cost.
文摘Effect of residual Doppler averaging on the probe absorption in an alkali vapor medium in the presence of a coherent pump beam is studied analytically for the Ξ type system. A coherent probe field is assumed to connect the ground level with the intermediate level whereas a coherent control beam is supposed to act between the intermediate energy level and the uppermost level. Optical Bloch equations(OBE) for a three-level Ξ type system and a four-level Ξ type system are derived by using density matrix formalism. These equations are solved by an analytic method to determine the probe response, which not only depends on the wavelength difference between the control(pump) field and the probe field but shows substantially different features depending on whether the wavelength of the control field is greater than that of the probe field or the reverse. The effect of temperature on probe response is also shown. Enhancement in probe absorption and additional features are noticed under a strong probe limit at room temperature. The four-level Ξ type system has two ground levels and this leads to substantial modification in the simulated probe absorption as compared to the three-level system.