As the main component of computer integrated manufacturing system (CIMS), flexible manufacturing system (FMS) should be an open system with reusability and extenchaility. Moreover, as FMS is a complex asynchronous con...As the main component of computer integrated manufacturing system (CIMS), flexible manufacturing system (FMS) should be an open system with reusability and extenchaility. Moreover, as FMS is a complex asynchronous concurrent system, its model also should have the abilities to express the concurrency in the system and to analyze the behavior of the system. It is difficult to use any one method to model such a complex system as FMS. A modeling method using Object-oriented modeling language-unified modeling language (UML) and object-Oriented Petri nets (OPNs) is proposed. Class diagram in UML is used to represent the static relations among the objects in FMS. OPNs are used to model the dynamic behavior of the objects and conduct performance analysis. OPNs also can be used to identify the attributes and operations of the objects. The model can describe the system integrally and can be used to design FMS control software naturally.展开更多
With the rapid growth of urbanization and the increasing demand for transportation, urban traffic congestion has become a hindrance to individuals’ travel experience. Urban intersections are one of the primary source...With the rapid growth of urbanization and the increasing demand for transportation, urban traffic congestion has become a hindrance to individuals’ travel experience. Urban intersections are one of the primary sources of traffic congestion, and these bottlenecks have a negative impact not only on traffic efficacy but also on the surrounding road traffic in the region. To alleviate urban traffic congestion, cyber-physical systems have been widely implemented in the transportation industry, allowing for the perception, analysis, calculation, and dispatching of urban traffic flow, as well as making urban transportation safe, efficient, and quick. As the system scale and functions increase, system design has become increasingly complex, necessitating a deeper comprehension of the system’s structure and interaction relationships to construct a stable and reliable system. Therefore, this study proposes a method for designing cyber-physical systems for urban traffic intersections based on Model-Based Systems Engineering (MBSE). This method models and analyses exhaustively the system’s requirements, functions, and logical architecture using System Modeling Language (SysML). After the architecture design has been completed, an architecture verification and optimization method based on Failure Mode and Effect Analysis (FMEA) for urban road intersection cyber-physical systems is utilized to analyze the architecture’s reliability by analyzing the failure modes of activities and to optimize the system architecture to improve the design’s efficiency and reliability.展开更多
基金This project is supported by National Natural Science Foundation of China !(59889505)
文摘As the main component of computer integrated manufacturing system (CIMS), flexible manufacturing system (FMS) should be an open system with reusability and extenchaility. Moreover, as FMS is a complex asynchronous concurrent system, its model also should have the abilities to express the concurrency in the system and to analyze the behavior of the system. It is difficult to use any one method to model such a complex system as FMS. A modeling method using Object-oriented modeling language-unified modeling language (UML) and object-Oriented Petri nets (OPNs) is proposed. Class diagram in UML is used to represent the static relations among the objects in FMS. OPNs are used to model the dynamic behavior of the objects and conduct performance analysis. OPNs also can be used to identify the attributes and operations of the objects. The model can describe the system integrally and can be used to design FMS control software naturally.
基金supported by the National Key R&D Program of China(2021YFB2501000).
文摘With the rapid growth of urbanization and the increasing demand for transportation, urban traffic congestion has become a hindrance to individuals’ travel experience. Urban intersections are one of the primary sources of traffic congestion, and these bottlenecks have a negative impact not only on traffic efficacy but also on the surrounding road traffic in the region. To alleviate urban traffic congestion, cyber-physical systems have been widely implemented in the transportation industry, allowing for the perception, analysis, calculation, and dispatching of urban traffic flow, as well as making urban transportation safe, efficient, and quick. As the system scale and functions increase, system design has become increasingly complex, necessitating a deeper comprehension of the system’s structure and interaction relationships to construct a stable and reliable system. Therefore, this study proposes a method for designing cyber-physical systems for urban traffic intersections based on Model-Based Systems Engineering (MBSE). This method models and analyses exhaustively the system’s requirements, functions, and logical architecture using System Modeling Language (SysML). After the architecture design has been completed, an architecture verification and optimization method based on Failure Mode and Effect Analysis (FMEA) for urban road intersection cyber-physical systems is utilized to analyze the architecture’s reliability by analyzing the failure modes of activities and to optimize the system architecture to improve the design’s efficiency and reliability.