An entirely new framework is established for developing various single- and multi-step formulations for the numerical integration of ordinary differential equations. Besides polynomials, unconventional base-functions ...An entirely new framework is established for developing various single- and multi-step formulations for the numerical integration of ordinary differential equations. Besides polynomials, unconventional base-functions with trigonometric and exponential terms satisfying different conditions are employed to generate a number of formulations. Performances of the new schemes are tested against well-known numerical integrators for selected test cases with quite satisfactory results. Convergence and stability issues of the new formulations are not addressed as the treatment of these aspects requires a separate work. The general approach introduced herein opens a wide vista for producing virtually unlimited number of formulations.展开更多
In this study, the Bernstein collocation method has been expanded to Stancu collocation method for numerical solution of the charged particle motion for certain configurations of oscillating magnetic fields modelled b...In this study, the Bernstein collocation method has been expanded to Stancu collocation method for numerical solution of the charged particle motion for certain configurations of oscillating magnetic fields modelled by a class of linear integro-differential equations. As the method has been improved, the Stancu polynomials that are generalization of the Bernstein polynomials have been used. The method has been tested on a physical problem how the method can be applied. Moreover, numerical results of the method have been compared with the numerical results of the other methods to indicate the efficiency of the method.展开更多
This paper deals with the singular perturbation of the boundary value problem of the systems for quasi-linear ordinary differential equationswhere x,f, y , h, A, B and C all belong to Rn , and g is an n×n matrix ...This paper deals with the singular perturbation of the boundary value problem of the systems for quasi-linear ordinary differential equationswhere x,f, y , h, A, B and C all belong to Rn , and g is an n×n matrix function. Under suitable conditions we prove the existence of the solutions by diagonalization and the fixed point theorem and also estimate the remainder.展开更多
This paper is devoted to the study of the linearization problem of system of three second-order ordinary differential equations and . The necessary conditions for linearization by general point transformation and are ...This paper is devoted to the study of the linearization problem of system of three second-order ordinary differential equations and . The necessary conditions for linearization by general point transformation and are found. The sufficient conditions for linearization by restricted class of point transformation and are obtained. Moreover, the procedure for obtaining the linearizing transformation is provided in explicit forms. Examples demonstrating the procedure of using the linearization theorems are presented.展开更多
Stochastic fractional differential systems are important and useful in the mathematics,physics,and engineering fields.However,the determination of their probabilistic responses is difficult due to their non-Markovian ...Stochastic fractional differential systems are important and useful in the mathematics,physics,and engineering fields.However,the determination of their probabilistic responses is difficult due to their non-Markovian property.The recently developed globally-evolving-based generalized density evolution equation(GE-GDEE),which is a unified partial differential equation(PDE)governing the transient probability density function(PDF)of a generic path-continuous process,including non-Markovian ones,provides a feasible tool to solve this problem.In the paper,the GE-GDEE for multi-dimensional linear fractional differential systems subject to Gaussian white noise is established.In particular,it is proved that in the GE-GDEE corresponding to the state-quantities of interest,the intrinsic drift coefficient is a time-varying linear function,and can be analytically determined.In this sense,an alternative low-dimensional equivalent linear integer-order differential system with exact closed-form coefficients for the original highdimensional linear fractional differential system can be constructed such that their transient PDFs are identical.Specifically,for a multi-dimensional linear fractional differential system,if only one or two quantities are of interest,GE-GDEE is only in one or two dimensions,and the surrogate system would be a one-or two-dimensional linear integer-order system.Several examples are studied to assess the merit of the proposed method.Though presently the closed-form intrinsic drift coefficient is only available for linear stochastic fractional differential systems,the findings in the present paper provide a remarkable demonstration on the existence and eligibility of GE-GDEE for the case that the original high-dimensional system itself is non-Markovian,and provide insights for the physical-mechanism-informed determination of intrinsic drift and diffusion coefficients of GE-GDEE of more generic complex nonlinear systems.展开更多
In this paper, we study the existence of the transcendental meromorphic solution of the delay differential equations , where a(z) is a rational function, and are polynomials in w(z) with rational c...In this paper, we study the existence of the transcendental meromorphic solution of the delay differential equations , where a(z) is a rational function, and are polynomials in w(z) with rational coefficients, k is a positive integer. Under the assumption when above equations own transcendental meromorphic solutions with minimal hyper-type, we derive the concrete conditions on the degree of the right side of them. Specially, when w(z)=0 is a root of , its multiplicity is at most k. Some examples are given here to illustrate that our results are accurate.展开更多
This paper deals with the numerical solution of initial value problems for systems of differential equations with a delay argument. The numerical stability of a linear multistep method is investigated by analysing the...This paper deals with the numerical solution of initial value problems for systems of differential equations with a delay argument. The numerical stability of a linear multistep method is investigated by analysing the solution of the lest equation y’(t)=Ay(t) + By(1-t),where A,B denote constant complex N×N-matrices,and t】0.We investigate carefully the characterization of the stability region.展开更多
In this paper, a new approach for solving the second order nonlinear ordinary differential equation y’’ + p(x;y)y’ = G(x;y) is considered. The results obtained by this approach are illustrated by examples and show ...In this paper, a new approach for solving the second order nonlinear ordinary differential equation y’’ + p(x;y)y’ = G(x;y) is considered. The results obtained by this approach are illustrated by examples and show that this method is powerful for this type of equations.展开更多
First, an asynchronous distributed parallel evolutionary modeling algorithm (PEMA) for building the model of system of ordinary differential equations for dynamical systems is proposed in this paper. Then a series of ...First, an asynchronous distributed parallel evolutionary modeling algorithm (PEMA) for building the model of system of ordinary differential equations for dynamical systems is proposed in this paper. Then a series of parallel experiments have been conducted to systematically test the influence of some important parallel control parameters on the performance of the algorithm. A lot of experimental results are obtained and we make some analysis and explanations to them.展开更多
In this paper, we prove existence and multiplicities of solutions for asymptotically linear ordinary differential equations satisfying Sturm-Liouville boundary value conditions with resonance. Adding assumption H3 tha...In this paper, we prove existence and multiplicities of solutions for asymptotically linear ordinary differential equations satisfying Sturm-Liouville boundary value conditions with resonance. Adding assumption H3 that is similar to (LL) in Theorem 1.1, by index theory and Morse theory, we obtain more nontrivial solutions.展开更多
In this article, we will explore the applications of linear ordinary differential equations (linear ODEs) in Physics and other branches of mathematics, and dig into the matrix method for solving linear ODEs. Although ...In this article, we will explore the applications of linear ordinary differential equations (linear ODEs) in Physics and other branches of mathematics, and dig into the matrix method for solving linear ODEs. Although linear ODEs have a comparatively easy form, they are effective in solving certain physical and geometrical problems. We will begin by introducing fundamental knowledge in Linear Algebra and proving the existence and uniqueness of solution for ODEs. Then, we will concentrate on finding the solutions for ODEs and introducing the matrix method for solving linear ODEs. Eventually, we will apply the conclusions we’ve gathered from the previous parts into solving problems concerning Physics and differential curves. The matrix method is of great importance in doing higher dimensional computations, as it allows multiple variables to be calculated at the same time, thus reducing the complexity.展开更多
The computational uncertainty principle states that the numerical computation of nonlinear ordinary differential equations(ODEs) should use appropriately sized time steps to obtain reliable solutions.However,the int...The computational uncertainty principle states that the numerical computation of nonlinear ordinary differential equations(ODEs) should use appropriately sized time steps to obtain reliable solutions.However,the interval of effective step size(IES) has not been thoroughly explored theoretically.In this paper,by using a general estimation for the total error of the numerical solutions of ODEs,a method is proposed for determining an approximate IES by translating the functions for truncation and rounding errors.It also illustrates this process with an example.Moreover,the relationship between the IES and its approximation is found,and the relative error of the approximation with respect to the IES is given.In addition,variation in the IES with increasing integration time is studied,which can provide an explanation for the observed numerical results.The findings contribute to computational step-size choice for reliable numerical solutions.展开更多
Existence of positive solution is established for boundary value problems of nonsingular for a class quasi-linear ordinary differential equation on the semi-infinite interval. The results are obtained by using the non...Existence of positive solution is established for boundary value problems of nonsingular for a class quasi-linear ordinary differential equation on the semi-infinite interval. The results are obtained by using the nonlinear alternative of Leray-Schauder method.展开更多
We employ the Duan-Rach-Wazwaz modified Adomian decomposition method for solving initial value problems for the systems of nonlinear ordinary differential equations numerically. In order to confirm practicality, robus...We employ the Duan-Rach-Wazwaz modified Adomian decomposition method for solving initial value problems for the systems of nonlinear ordinary differential equations numerically. In order to confirm practicality, robustness and reliability of the method, we compare the results from the modified Adomian decomposition method with those from the MATHEMATICA solutions and also from the fourth-order Runge Kutta method solutions in some cases. Furthermore, we apply Padé approximants technique to improve the solutions of the modified decomposition method whenever the exact solutions exist.展开更多
By making use of the differential inequalities, in this paper we study the uniqueness of solutions of the two kinds of the singularly perturbed boundary value problems for the nonlinear third order ordinary differenti...By making use of the differential inequalities, in this paper we study the uniqueness of solutions of the two kinds of the singularly perturbed boundary value problems for the nonlinear third order ordinary differential equation with a small parameter ε>0: where i=1, 2; a(?)(ε), β(ε) and γ(ε) are functions defined on (0, ε_o], while ε_o>0 is a constant.This paper is the continuation of our works [4, 6].展开更多
Channel prediction is critical to address the channel aging issue in mobile scenarios.Existing channel prediction techniques are mainly designed for discrete channel prediction,which can only predict the future channe...Channel prediction is critical to address the channel aging issue in mobile scenarios.Existing channel prediction techniques are mainly designed for discrete channel prediction,which can only predict the future channel in a fixed time slot per frame,while the other intra-frame channels are usually recovered by interpolation.However,these approaches suffer from a serious interpolation loss,especially for mobile millimeter-wave communications.To solve this challenging problem,we propose a tensor neural ordinary differential equation(TN-ODE)based continuous-time channel prediction scheme to realize the direct prediction of intra-frame channels.Specifically,inspired by the recently developed continuous mapping model named neural ODE in the field of machine learning,we first utilize the neural ODE model to predict future continuous-time channels.To improve the channel prediction accuracy and reduce computational complexity,we then propose the TN-ODE scheme to learn the structural characteristics of the high-dimensional channel by low-dimensional learnable transform.Simulation results show that the proposed scheme is able to achieve higher intra-frame channel prediction accuracy than existing schemes.展开更多
This paper presents a technique for obtaining an exact solution for the well-known Laguerre’s differential equations that arise in the modeling of several phenomena in quantum mechanics and engineering. We utilize an...This paper presents a technique for obtaining an exact solution for the well-known Laguerre’s differential equations that arise in the modeling of several phenomena in quantum mechanics and engineering. We utilize an efficient procedure based on the modified Adomian decomposition method to obtain closed-form solutions of the Laguerre’s and the associated Laguerre’s differential equations. The proposed technique makes sense as the attitudes of the acquired solutions towards the neighboring singular points are correctly taken care of.展开更多
Based on the Laplace transform, a direct derivation of the ordinary differential equations for the three-dimensional transient free-surface Green function in marine hydrodynamics is presented. The results for the 3D G...Based on the Laplace transform, a direct derivation of the ordinary differential equations for the three-dimensional transient free-surface Green function in marine hydrodynamics is presented. The results for the 3D Green function and all its spatial derivatives are a set of fourth-order ordinary differential equations, which are identical with that of Clement (1998). All of these results may be used to accelerate numerical computation for the time-domain boundary element method in marine hydrodynamics.展开更多
In this paper, a high accuracy finite volume element method is presented for two-point boundary value problem of second order ordinary differential equation, which differs from the high order generalized difference me...In this paper, a high accuracy finite volume element method is presented for two-point boundary value problem of second order ordinary differential equation, which differs from the high order generalized difference methods. It is proved that the method has optimal order error estimate O(h3) in H1 norm. Finally, two examples show that the method is effective.展开更多
In this article, the authors study the growth of certain second order linear differential equation f″+A(z)f′+B(z)f=0 and give precise estimates for the hyperorder of solutions of infinite order. Under similar ...In this article, the authors study the growth of certain second order linear differential equation f″+A(z)f′+B(z)f=0 and give precise estimates for the hyperorder of solutions of infinite order. Under similar conditions, higher order differential equations will be considered.展开更多
文摘An entirely new framework is established for developing various single- and multi-step formulations for the numerical integration of ordinary differential equations. Besides polynomials, unconventional base-functions with trigonometric and exponential terms satisfying different conditions are employed to generate a number of formulations. Performances of the new schemes are tested against well-known numerical integrators for selected test cases with quite satisfactory results. Convergence and stability issues of the new formulations are not addressed as the treatment of these aspects requires a separate work. The general approach introduced herein opens a wide vista for producing virtually unlimited number of formulations.
文摘In this study, the Bernstein collocation method has been expanded to Stancu collocation method for numerical solution of the charged particle motion for certain configurations of oscillating magnetic fields modelled by a class of linear integro-differential equations. As the method has been improved, the Stancu polynomials that are generalization of the Bernstein polynomials have been used. The method has been tested on a physical problem how the method can be applied. Moreover, numerical results of the method have been compared with the numerical results of the other methods to indicate the efficiency of the method.
文摘This paper deals with the singular perturbation of the boundary value problem of the systems for quasi-linear ordinary differential equationswhere x,f, y , h, A, B and C all belong to Rn , and g is an n×n matrix function. Under suitable conditions we prove the existence of the solutions by diagonalization and the fixed point theorem and also estimate the remainder.
文摘This paper is devoted to the study of the linearization problem of system of three second-order ordinary differential equations and . The necessary conditions for linearization by general point transformation and are found. The sufficient conditions for linearization by restricted class of point transformation and are obtained. Moreover, the procedure for obtaining the linearizing transformation is provided in explicit forms. Examples demonstrating the procedure of using the linearization theorems are presented.
基金The supports of the National Natural Science Foundation of China(Grant Nos.51725804 and U1711264)the Research Fund for State Key Laboratories of Ministry of Science and Technology of China(SLDRCE19-B-23)the Shanghai Post-Doctoral Excellence Program(2022558)。
文摘Stochastic fractional differential systems are important and useful in the mathematics,physics,and engineering fields.However,the determination of their probabilistic responses is difficult due to their non-Markovian property.The recently developed globally-evolving-based generalized density evolution equation(GE-GDEE),which is a unified partial differential equation(PDE)governing the transient probability density function(PDF)of a generic path-continuous process,including non-Markovian ones,provides a feasible tool to solve this problem.In the paper,the GE-GDEE for multi-dimensional linear fractional differential systems subject to Gaussian white noise is established.In particular,it is proved that in the GE-GDEE corresponding to the state-quantities of interest,the intrinsic drift coefficient is a time-varying linear function,and can be analytically determined.In this sense,an alternative low-dimensional equivalent linear integer-order differential system with exact closed-form coefficients for the original highdimensional linear fractional differential system can be constructed such that their transient PDFs are identical.Specifically,for a multi-dimensional linear fractional differential system,if only one or two quantities are of interest,GE-GDEE is only in one or two dimensions,and the surrogate system would be a one-or two-dimensional linear integer-order system.Several examples are studied to assess the merit of the proposed method.Though presently the closed-form intrinsic drift coefficient is only available for linear stochastic fractional differential systems,the findings in the present paper provide a remarkable demonstration on the existence and eligibility of GE-GDEE for the case that the original high-dimensional system itself is non-Markovian,and provide insights for the physical-mechanism-informed determination of intrinsic drift and diffusion coefficients of GE-GDEE of more generic complex nonlinear systems.
文摘In this paper, we study the existence of the transcendental meromorphic solution of the delay differential equations , where a(z) is a rational function, and are polynomials in w(z) with rational coefficients, k is a positive integer. Under the assumption when above equations own transcendental meromorphic solutions with minimal hyper-type, we derive the concrete conditions on the degree of the right side of them. Specially, when w(z)=0 is a root of , its multiplicity is at most k. Some examples are given here to illustrate that our results are accurate.
文摘This paper deals with the numerical solution of initial value problems for systems of differential equations with a delay argument. The numerical stability of a linear multistep method is investigated by analysing the solution of the lest equation y’(t)=Ay(t) + By(1-t),where A,B denote constant complex N×N-matrices,and t】0.We investigate carefully the characterization of the stability region.
文摘In this paper, a new approach for solving the second order nonlinear ordinary differential equation y’’ + p(x;y)y’ = G(x;y) is considered. The results obtained by this approach are illustrated by examples and show that this method is powerful for this type of equations.
基金Supported by the National Natural Science Foundation of China(60133010,70071042,60073043)
文摘First, an asynchronous distributed parallel evolutionary modeling algorithm (PEMA) for building the model of system of ordinary differential equations for dynamical systems is proposed in this paper. Then a series of parallel experiments have been conducted to systematically test the influence of some important parallel control parameters on the performance of the algorithm. A lot of experimental results are obtained and we make some analysis and explanations to them.
文摘In this paper, we prove existence and multiplicities of solutions for asymptotically linear ordinary differential equations satisfying Sturm-Liouville boundary value conditions with resonance. Adding assumption H3 that is similar to (LL) in Theorem 1.1, by index theory and Morse theory, we obtain more nontrivial solutions.
文摘In this article, we will explore the applications of linear ordinary differential equations (linear ODEs) in Physics and other branches of mathematics, and dig into the matrix method for solving linear ODEs. Although linear ODEs have a comparatively easy form, they are effective in solving certain physical and geometrical problems. We will begin by introducing fundamental knowledge in Linear Algebra and proving the existence and uniqueness of solution for ODEs. Then, we will concentrate on finding the solutions for ODEs and introducing the matrix method for solving linear ODEs. Eventually, we will apply the conclusions we’ve gathered from the previous parts into solving problems concerning Physics and differential curves. The matrix method is of great importance in doing higher dimensional computations, as it allows multiple variables to be calculated at the same time, thus reducing the complexity.
基金supported by the National Natural Science Foundation of China[grant numbers 41375110,11471244]
文摘The computational uncertainty principle states that the numerical computation of nonlinear ordinary differential equations(ODEs) should use appropriately sized time steps to obtain reliable solutions.However,the interval of effective step size(IES) has not been thoroughly explored theoretically.In this paper,by using a general estimation for the total error of the numerical solutions of ODEs,a method is proposed for determining an approximate IES by translating the functions for truncation and rounding errors.It also illustrates this process with an example.Moreover,the relationship between the IES and its approximation is found,and the relative error of the approximation with respect to the IES is given.In addition,variation in the IES with increasing integration time is studied,which can provide an explanation for the observed numerical results.The findings contribute to computational step-size choice for reliable numerical solutions.
文摘Existence of positive solution is established for boundary value problems of nonsingular for a class quasi-linear ordinary differential equation on the semi-infinite interval. The results are obtained by using the nonlinear alternative of Leray-Schauder method.
文摘We employ the Duan-Rach-Wazwaz modified Adomian decomposition method for solving initial value problems for the systems of nonlinear ordinary differential equations numerically. In order to confirm practicality, robustness and reliability of the method, we compare the results from the modified Adomian decomposition method with those from the MATHEMATICA solutions and also from the fourth-order Runge Kutta method solutions in some cases. Furthermore, we apply Padé approximants technique to improve the solutions of the modified decomposition method whenever the exact solutions exist.
基金Project supported by the National Natural Science Foundation of China.
文摘By making use of the differential inequalities, in this paper we study the uniqueness of solutions of the two kinds of the singularly perturbed boundary value problems for the nonlinear third order ordinary differential equation with a small parameter ε>0: where i=1, 2; a(?)(ε), β(ε) and γ(ε) are functions defined on (0, ε_o], while ε_o>0 is a constant.This paper is the continuation of our works [4, 6].
基金supported in part by the National Key Research and Development Program of China(Grant No.2020YFB1805005)in part by the National Natural Science Foundation of China(Grant No.62031019)in part by the European Commission through the H2020-MSCA-ITN META WIRELESS Research Project under Grant 956256。
文摘Channel prediction is critical to address the channel aging issue in mobile scenarios.Existing channel prediction techniques are mainly designed for discrete channel prediction,which can only predict the future channel in a fixed time slot per frame,while the other intra-frame channels are usually recovered by interpolation.However,these approaches suffer from a serious interpolation loss,especially for mobile millimeter-wave communications.To solve this challenging problem,we propose a tensor neural ordinary differential equation(TN-ODE)based continuous-time channel prediction scheme to realize the direct prediction of intra-frame channels.Specifically,inspired by the recently developed continuous mapping model named neural ODE in the field of machine learning,we first utilize the neural ODE model to predict future continuous-time channels.To improve the channel prediction accuracy and reduce computational complexity,we then propose the TN-ODE scheme to learn the structural characteristics of the high-dimensional channel by low-dimensional learnable transform.Simulation results show that the proposed scheme is able to achieve higher intra-frame channel prediction accuracy than existing schemes.
文摘This paper presents a technique for obtaining an exact solution for the well-known Laguerre’s differential equations that arise in the modeling of several phenomena in quantum mechanics and engineering. We utilize an efficient procedure based on the modified Adomian decomposition method to obtain closed-form solutions of the Laguerre’s and the associated Laguerre’s differential equations. The proposed technique makes sense as the attitudes of the acquired solutions towards the neighboring singular points are correctly taken care of.
基金The paper was financially supported by the National Natural Science Foundation of China (No. 19802008)Excellent Doctoral Dissertation Grant of the Ministry of Education of China (No. 199927)
文摘Based on the Laplace transform, a direct derivation of the ordinary differential equations for the three-dimensional transient free-surface Green function in marine hydrodynamics is presented. The results for the 3D Green function and all its spatial derivatives are a set of fourth-order ordinary differential equations, which are identical with that of Clement (1998). All of these results may be used to accelerate numerical computation for the time-domain boundary element method in marine hydrodynamics.
基金heprojectissupportedbyNNSFofChina (No .1 9972 0 39) .
文摘In this paper, a high accuracy finite volume element method is presented for two-point boundary value problem of second order ordinary differential equation, which differs from the high order generalized difference methods. It is proved that the method has optimal order error estimate O(h3) in H1 norm. Finally, two examples show that the method is effective.
基金the National Natural Science Foundation of China(10161006,10571044)the Natural Science Foundation of Guangdong Prov(06025059)
文摘In this article, the authors study the growth of certain second order linear differential equation f″+A(z)f′+B(z)f=0 and give precise estimates for the hyperorder of solutions of infinite order. Under similar conditions, higher order differential equations will be considered.