BACKGROUND Monkeypox(Mpox),is a disease of global public health concern,as it does not affect only countries in western and central Africa.AIM To assess Burundi healthcare workers(HCWs)s’level of knowledge and confid...BACKGROUND Monkeypox(Mpox),is a disease of global public health concern,as it does not affect only countries in western and central Africa.AIM To assess Burundi healthcare workers(HCWs)s’level of knowledge and confidence in the diagnosis and management of Mpox.METHODS We conducted a cross-sectional study via an online survey designed mainly from the World Health Organization course distributed among Burundi HCWs from June-July 2023.The questionnaire comprises 8 socioprofessional-related questions,22 questions about Mpox disease knowledge,and 3 questions to assess confidence in Mpox diagnosis and management.The data were analyzed via SPSS software version 25.0.A P value<0.05 was considered to indicate statistical significance.RESULTS The study sample comprised 471 HCWs who were mainly medical doctors(63.9%)and nurses(30.1%).None of the 22 questions concerning Mpox knowledge had at least 50%correct responses.A very low number of HCWs(17.4%)knew that Mpox has a vaccine.The confidence level to diagnose(21.20%),treat(18.00%)or prevent(23.30%)Mpox was low among HCWs.The confidence level in the diagnosis of Mpox was associated with the HCWs’age(P value=0.009),sex(P value<0.001),work experience(P value=0.002),and residence(P value<0.001).The confidence level to treat Mpox was significantly associated with the HCWs’age(P value=0.050),sex(P value<0.001),education(P value=0.033)and occupation(P value=0.005).The confidence level to prevent Mpox was associated with the HCWs’education(P value<0.001),work experience(P value=0.002),residence(P value<0.001)and type of work institution(P value=0.003).CONCLUSION This study revealed that HCWs have the lowest level of knowledge regarding Mpox and a lack of confidence in the ability to diagnose,treat or prevent it.There is an urgent need to organize continuing medical education programs on Mpox epidemiology and preparedness for Burundi HCWs.We encourage future researchers to assess potential hesitancy toward Mpox vaccination and its associated factors.展开更多
Based on the perception of knowledge management from experts specializing in different fields,and experts at home and abroad,the knowledge management of agricultural scientific research institution can build new platf...Based on the perception of knowledge management from experts specializing in different fields,and experts at home and abroad,the knowledge management of agricultural scientific research institution can build new platform,offer new approach for realization of explicit or tacit knowledge,and promote resilience and innovative ability of scientific research institution.The thesis has introduced functions of knowledge management research of agricultural science.First,it can transform the tacit knowledge into explicit knowledge.Second,it can make all the scientific personnel share knowledge.Third,it is beneficial to the development of prototype system of knowledge management.Fourth,it mainly researches the realization of knowledge management system.Fifth,it can manage the external knowledge via competitive intelligence.Sixth,it can foster talents of knowledge management for agricultural scientific research institution.Seventh,it offers the decision-making service for leaders to manage scientific program.The thesis also discusses the content of knowledge management of agricultural scientific research institution as follows:production and innovation of knowledge;attainment and organizing of knowledge;dissemination and share of knowledge;management of human resources and the construction and management of infrastructure.We have put forward corresponding countermeasures to further reinforce the knowledge management research of agricultural scientific research institution.展开更多
A new algorithm for the knowledge discovery based on statistic inductionlogic is proposed, and the validity of the methods is verified by examples. The method is suitablefor a large range of knowledge discovery applic...A new algorithm for the knowledge discovery based on statistic inductionlogic is proposed, and the validity of the methods is verified by examples. The method is suitablefor a large range of knowledge discovery applications in the studying of causal relation,uncertainty knowledge acquisition and principal factors analyzing. The language filed description ofthe state space makes the algorithm robust in the adaptation with easier understandable results,which are isomotopy with natural language in the topologic space.展开更多
As a core resource of scientific knowledge,academic documents have been frequently used by scholars,especially newcomers to a given field.In the era of big data,scientific documents such as academic articles,patents,t...As a core resource of scientific knowledge,academic documents have been frequently used by scholars,especially newcomers to a given field.In the era of big data,scientific documents such as academic articles,patents,technical reports,and webpages are booming.The rapid daily growth of scientific documents indicates that a large amount of knowledge is proposed,improved,and used(Zhang et al.,2021).展开更多
Purpose:Given the information overload of scientific literature,there is an increasing need for computable biomedical knowledge buried in free text.This study aimed to develop a novel approach to extracting and measur...Purpose:Given the information overload of scientific literature,there is an increasing need for computable biomedical knowledge buried in free text.This study aimed to develop a novel approach to extracting and measuring uncertain biomedical knowledge from scientific statements.Design/methodology/approach:Taking cardiovascular research publications in China as a sample,we extracted subject-predicate-object triples(SPO triples)as knowledge units and unknown/hedging/conflicting uncertainties as the knowledge context.We introduced information entropy(IE)as potential metric to quantify the uncertainty of epistemic status of scientific knowledge represented at subject-object pairs(SO pairs)levels.Findings:The results indicated an extraordinary growth of cardiovascular publications in China while only a modest growth of the novel SPO triples.After evaluating the uncertainty of biomedical knowledge with IE,we identified the Top 10 SO pairs with highest IE,which implied the epistemic status pluralism.Visual presentation of the SO pairs overlaid with uncertainty provided a comprehensive overview of clusters of biomedical knowledge and contending topics in cardiovascular research.Research limitations:The current methods didn’t distinguish the specificity and probabilities of uncertainty cue words.The number of sentences surrounding a given triple may also influence the value of IE.Practical implications:Our approach identified major uncertain knowledge areas such as diagnostic biomarkers,genetic polymorphism and co-existing risk factors related to cardiovascular diseases in China.These areas are suggested to be prioritized;new hypotheses need to be verified,while disputes,conflicts,and contradictions need to be settled.Originality/value:We provided a novel approach by combining natural language processing and computational linguistics with informetric methods to extract and measure uncertain knowledge from scientific statements.展开更多
The present work deals with the development of an Ontology-Based Knowledge Network of soil/water physicochemical & biological properties (soil/water concepts), derived from ASTM Standard Methods (ASTMi,n) and rele...The present work deals with the development of an Ontology-Based Knowledge Network of soil/water physicochemical & biological properties (soil/water concepts), derived from ASTM Standard Methods (ASTMi,n) and relevant scientific/applicable references (published papers—PPi,n) to fill up/bridge the gap of the information science between cited Standards and infiltration discipline conceptual vocabulary providing accordingly a dedicated/internal Knowledge Base (KB). This attempt constitutes an innovative approach, since it is based on externalizing domain knowledge in the form of Ontology-Based Knowledge Networks, incorporating standardized methodology in soil engineering. The ontology soil/water concepts (semantics) of the developed network correspond to soil/water physicochemical & biological properties, classified in seven different generations that are distinguished/located in infiltration/percolation process of contaminated water through soil porous media. The interconnections with arcs between corresponding concepts/properties among the consecutive generations are defined by the relationship of dependent and independent variables. All these interconnections are documented according to the below three ways: 1) dependent and independent variables interconnected by using the logical operator “<em>depends on</em>” quoting existent explicit functions and equations;2) dependent and independent variables interconnected by using the logical operator “<em>depends on</em>” quoting produced implicit functions, according to Rayleigh’s method of indices;3) dependent and independent variables interconnected by using the logical operator “<em>related to</em>” based on a logical dependence among the examined nodes-concepts-variables. The aforementioned approach provides significant advantages to semantic web developers and web users by means of prompt knowledge navigation, tracking, retrieval and usage.展开更多
The acquisition of knowledge and the representation of that acquisition have always been viewed as the bottleneck in the construction of knowledge-based systems. The traditional methods of acquiring knowledge are base...The acquisition of knowledge and the representation of that acquisition have always been viewed as the bottleneck in the construction of knowledge-based systems. The traditional methods of acquiring knowledge are based on knowledge engineering and communication with field experts. However, these methods cannot produce systematic knowledge effectively, automatically construct knowledge-based systems, or benefit knowledge reasoning. It has been noted that, in specific professional fields, experts often use fixed patterns to describe their expertise in the scientific articles that they publish. Abstracts and conclusions, for example, are key components of the scientific article, containing abundant field knowledge. This paper suggests a method of acquiring production rules from the abstracts and conclusions of scientific articles in specific fields based on natural language comprehension. First, the causal statements in article abstracts and conclusions are extracted using existing techniques, such as text mining. Next, antecedence and consequence fragments are extracted using causal template matching algorithms. As the final step, part-of-speech-tagging production rules are automatically generated according to a syntax parsing tree from the speech pair sequence. Experiments show that this system not only improves the efficiency of knowledge acquisition but also simultaneously generates systematic knowledge and guarantees the accuracy of acquired knowledge.展开更多
Co-word networks are constructed with author-provided keywords in academic publications and their relations of co-occurrence.As special form of scientific knowledge networks,they represent the cognitive structure of s...Co-word networks are constructed with author-provided keywords in academic publications and their relations of co-occurrence.As special form of scientific knowledge networks,they represent the cognitive structure of scientific literature.This paper analyzes the complex structure of a co-word network based on 8,190 author-provided keywords extracted from 3,651 papers in five Chinese core journals in the field of management science.Small-world and scale-free phenomena are found in this network.A large-scale co-word network graph,which consists of one major giant component and many small isolated components,has been generated with the GUESS software.The dynamic growth of keywords and keyword co-occurrence relationships are described with four new informetrics measures.The results indicate that existing concepts always serve as the intellectual base of new ideas as represented by keywords.展开更多
The present article outlines progress made in designing an intelligent information system for automatic management and knowledge discovery in large numeric and scientific databases, with a validating application to th...The present article outlines progress made in designing an intelligent information system for automatic management and knowledge discovery in large numeric and scientific databases, with a validating application to the CAST-NEONS environmental databases used for ocean modeling and prediction. We describe a discovery-learning process (Automatic Data Analysis System) which combines the features of two machine learning techniques to generate sets of production rules that efficiently describe the observational raw data contained in the database. Data clustering allows the system to classify the raw data into meaningful conceptual clusters, which the system learns by induction to build decision trees, from which are automatically deduced the production rules.展开更多
Introduction: We present the results of scientific and traditional knowledge, which were performed on students attending the School of Dental Surgery at the Faculty of Higher Studies Zaragoza UNAM and parents in the M...Introduction: We present the results of scientific and traditional knowledge, which were performed on students attending the School of Dental Surgery at the Faculty of Higher Studies Zaragoza UNAM and parents in the Milpa Alta policy delegation of the Federal District with the purpose to articulate such knowledge for planning oral health programs where the protection and promotion of oral health are prioritized. Method: This study was qualitative and quantitative, and 413 students of the career Dentist Faculty of Higher Studies Zaragoza UNAM and 2100 parents of twelve elementary school of the Milpa Alta delegation participated. Results: One of the results was that almost a third (28%) of the students go to the dentist only when they need to, however 40% of parents said they go to consultation only when they start to experience pain. Conclusion: It is important to articulate scientific knowledge with the traditional and famed in Odontology, for the operation alization of health programs attached to particular contexts where all stakeholders are involved to prevent oral problems.展开更多
The Xiangshan Science Conference is an interdisciplinary, comprehensive and small-scale forum with a higher knowledge-level, which has offered a broad and relaxed environment of academic exchange and free discussion f...The Xiangshan Science Conference is an interdisciplinary, comprehensive and small-scale forum with a higher knowledge-level, which has offered a broad and relaxed environment of academic exchange and free discussion for scientists, and probed into scientific frontiers and the future in the form of comment and reports on special topics and deep discussions. The aim of the conference is展开更多
Purpose:The goal of this study is to analyze the relationship between funded and unfunded papers and their citations in both basic and applied sciences.Design/methodology/approach:A power law model analyzes the relati...Purpose:The goal of this study is to analyze the relationship between funded and unfunded papers and their citations in both basic and applied sciences.Design/methodology/approach:A power law model analyzes the relationship between research funding and citations of papers using 831,337 documents recorded in the Web of Science database.Findings:The original results reveal general characteristics of the diffusion of science in research fields:a)Funded articles receive higher citations compared to unfunded papers in journals;b)Funded articles exhibit a super-linear growth in citations,surpassing the increase seen in unfunded articles.This finding reveals a higher diffusion of scientific knowledge in funded articles.Moreover,c)funded articles in both basic and applied sciences demonstrate a similar expected change in citations,equivalent to about 1.23%,when the number of funded papers increases by 1%in journals.This result suggests,for the first time,that funding effect of scientific research is an invariant driver,irrespective of the nature of the basic or applied sciences.Originality/value:This evidence suggests empirical laws of funding for scientific citations that explain the importance of robust funding mechanisms for achieving impactful research outcomes in science and society.These findings here also highlight that funding for scientific research is a critical driving force in supporting citations and the dissemination of scientific knowledge in recorded documents in both basic and applied sciences.Practical implications:This comprehensive result provides a holistic view of the relationship between funding and citation performance in science to guide policymakers and R&D managers with science policies by directing funding to research in promoting the scientific development and higher diffusion of results for the progress of human society.展开更多
Dear Editor,This letter is concerned with visual perception closely related to heterogeneous images.Facing the huge challenge brought by different image modalities,we propose a visual perception framework based on het...Dear Editor,This letter is concerned with visual perception closely related to heterogeneous images.Facing the huge challenge brought by different image modalities,we propose a visual perception framework based on heterogeneous image knowledge,i.e.,the domain knowledge associated with specific vision tasks,to better address the corresponding visual perception problems.展开更多
High-efficiency and low-cost knowledge sharing can improve the decision-making ability of autonomous vehicles by mining knowledge from the Internet of Vehicles(IoVs).However,it is challenging to ensure high efficiency...High-efficiency and low-cost knowledge sharing can improve the decision-making ability of autonomous vehicles by mining knowledge from the Internet of Vehicles(IoVs).However,it is challenging to ensure high efficiency of local data learning models while preventing privacy leakage in a high mobility environment.In order to protect data privacy and improve data learning efficiency in knowledge sharing,we propose an asynchronous federated broad learning(FBL)framework that integrates broad learning(BL)into federated learning(FL).In FBL,we design a broad fully connected model(BFCM)as a local model for training client data.To enhance the wireless channel quality for knowledge sharing and reduce the communication and computation cost of participating clients,we construct a joint resource allocation and reconfigurable intelligent surface(RIS)configuration optimization framework for FBL.The problem is decoupled into two convex subproblems.Aiming to improve the resource scheduling efficiency in FBL,a double Davidon–Fletcher–Powell(DDFP)algorithm is presented to solve the time slot allocation and RIS configuration problem.Based on the results of resource scheduling,we design a reward-allocation algorithm based on federated incentive learning(FIL)in FBL to compensate clients for their costs.The simulation results show that the proposed FBL framework achieves better performance than the comparison models in terms of efficiency,accuracy,and cost for knowledge sharing in the IoV.展开更多
Laser-induced breakdown spectroscopy(LIBS)has become a widely used atomic spectroscopic technique for rapid coal analysis.However,the vast amount of spectral information in LIBS contains signal uncertainty,which can a...Laser-induced breakdown spectroscopy(LIBS)has become a widely used atomic spectroscopic technique for rapid coal analysis.However,the vast amount of spectral information in LIBS contains signal uncertainty,which can affect its quantification performance.In this work,we propose a hybrid variable selection method to improve the performance of LIBS quantification.Important variables are first identified using Pearson's correlation coefficient,mutual information,least absolute shrinkage and selection operator(LASSO)and random forest,and then filtered and combined with empirical variables related to fingerprint elements of coal ash content.Subsequently,these variables are fed into a partial least squares regression(PLSR).Additionally,in some models,certain variables unrelated to ash content are removed manually to study the impact of variable deselection on model performance.The proposed hybrid strategy was tested on three LIBS datasets for quantitative analysis of coal ash content and compared with the corresponding data-driven baseline method.It is significantly better than the variable selection only method based on empirical knowledge and in most cases outperforms the baseline method.The results showed that on all three datasets the hybrid strategy for variable selection combining empirical knowledge and data-driven algorithms achieved the lowest root mean square error of prediction(RMSEP)values of 1.605,3.478 and 1.647,respectively,which were significantly lower than those obtained from multiple linear regression using only 12 empirical variables,which are 1.959,3.718 and 2.181,respectively.The LASSO-PLSR model with empirical support and 20 selected variables exhibited a significantly improved performance after variable deselection,with RMSEP values dropping from 1.635,3.962 and 1.647 to 1.483,3.086 and 1.567,respectively.Such results demonstrate that using empirical knowledge as a support for datadriven variable selection can be a viable approach to improve the accuracy and reliability of LIBS quantification.展开更多
Purpose:This paper aims to address the limitations in existing research on the evolution of knowledge flow networks by proposing a meso-level institutional field knowledge flow network evolution model(IKM).The purpose...Purpose:This paper aims to address the limitations in existing research on the evolution of knowledge flow networks by proposing a meso-level institutional field knowledge flow network evolution model(IKM).The purpose is to simulate the construction process of a knowledge flow network using knowledge organizations as units and to investigate its effectiveness in replicating institutional field knowledge flow networks.Design/Methodology/Approach:The IKM model enhances the preferential attachment and growth observed in scale-free BA networks,while incorporating three adjustment parameters to simulate the selection of connection targets and the types of nodes involved in the network evolution process Using the PageRank algorithm to calculate the significance of nodes within the knowledge flow network.To compare its performance,the BA and DMS models are also employed for simulating the network.Pearson coefficient analysis is conducted on the simulated networks generated by the IKM,BA and DMS models,as well as on the actual network.Findings:The research findings demonstrate that the IKM model outperforms the BA and DMS models in replicating the institutional field knowledge flow network.It provides comprehensive insights into the evolution mechanism of knowledge flow networks in the scientific research realm.The model also exhibits potential applicability to other knowledge networks that involve knowledge organizations as node units.Research Limitations:This study has some limitations.Firstly,it primarily focuses on the evolution of knowledge flow networks within the field of physics,neglecting other fields.Additionally,the analysis is based on a specific set of data,which may limit the generalizability of the findings.Future research could address these limitations by exploring knowledge flow networks in diverse fields and utilizing broader datasets.Practical Implications:The proposed IKM model offers practical implications for the construction and analysis of knowledge flow networks within institutions.It provides a valuable tool for understanding and managing knowledge exchange between knowledge organizations.The model can aid in optimizing knowledge flow and enhancing collaboration within organizations.Originality/value:This research highlights the significance of meso-level studies in understanding knowledge organization and its impact on knowledge flow networks.The IKM model demonstrates its effectiveness in replicating institutional field knowledge flow networks and offers practical implications for knowledge management in institutions.Moreover,the model has the potential to be applied to other knowledge networks,which are formed by knowledge organizations as node units.展开更多
Background: Non-communicable diseases are increasing among adolescents. The decision about diet is the foundation of eating habits that could persist to adulthood. Dietary decisions, which usually are hard to change l...Background: Non-communicable diseases are increasing among adolescents. The decision about diet is the foundation of eating habits that could persist to adulthood. Dietary decisions, which usually are hard to change later in life, make nutrition education at school paramount to prevent obesity and NCDs, and promote healthy eating. Objectives: To assess level of nutrition awareness and knowledge of healthy eating and food intake behaviors and association with Body Mass Index (BMI) and age. Methods: A cross sectional study that included measures such as age, gender, socioeconomic status, BMI, and nutrition knowledge was conducted in 264 respondents from 18th June 2015 to 9th July 2015. The nutrition knowledge questionnaire was composed of 24 questions divided into food nutrients, food contents, healthiest foods, and energy expenditure and nutrition benefits. CDC BMI chart for 2-20-year-olds was used to plot respondent’s weight and height. Results: The mean age of the respondents was 14.3 years (SD 0.79). Most of the respondents (153/252, 53.6%) had a low socio-economic status as categorized by the present study. The mean (SD) BMI was 20.08 (3.90). Most respondents (56.3%, 142/252) failed the knowledge test and scored below 50% and only two respondents (0.8%) had excellent nutrition knowledge. The mean percentage achieved was 46.1% (SD 15.91) ranging from 8.3% to 87.5%. There was a significant correlation between nutrition knowledge and BMI (p = 0.001). Conclusion: The study shows that adolescents do not have adequate nutrition knowledge, placing them at risk for developing non-communicable diseases later in life. Nutrition education programs are urgently needed for teachers, parents, and children.展开更多
The growing prevalence of knowledge reasoning using knowledge graphs(KGs)has substantially improved the accuracy and efficiency of intelligent medical diagnosis.However,current models primarily integrate electronic me...The growing prevalence of knowledge reasoning using knowledge graphs(KGs)has substantially improved the accuracy and efficiency of intelligent medical diagnosis.However,current models primarily integrate electronic medical records(EMRs)and KGs into the knowledge reasoning process,ignoring the differing significance of various types of knowledge in EMRs and the diverse data types present in the text.To better integrate EMR text information,we propose a novel intelligent diagnostic model named the Graph ATtention network incorporating Text representation in knowledge reasoning(GATiT),which comprises text representation,subgraph construction,knowledge reasoning,and diagnostic classification.In the text representation process,GATiT uses a pre-trained model to obtain text representations of the EMRs and additionally enhances embeddings by including chief complaint information and numerical information in the input.In the subgraph construction process,GATiT constructs text subgraphs and disease subgraphs from the KG,utilizing EMR text and the disease to be diagnosed.To differentiate the varying importance of nodes within the subgraphs features such as node categories,relevance scores,and other relevant factors are introduced into the text subgraph.Themessage-passing strategy and attention weight calculation of the graph attention network are adjusted to learn these features in the knowledge reasoning process.Finally,in the diagnostic classification process,the interactive attention-based fusion method integrates the results of knowledge reasoning with text representations to produce the final diagnosis results.Experimental results on multi-label and single-label EMR datasets demonstrate the model’s superiority over several state-of-theart methods.展开更多
The acquisition of valuable design knowledge from massive fragmentary data is challenging for designers in conceptual product design.This study proposes a novel method for acquiring design knowledge by combining deep ...The acquisition of valuable design knowledge from massive fragmentary data is challenging for designers in conceptual product design.This study proposes a novel method for acquiring design knowledge by combining deep learning with knowledge graph.Specifically,the design knowledge acquisition method utilises the knowledge extraction model to extract design-related entities and relations from fragmentary data,and further constructs the knowledge graph to support design knowledge acquisition for conceptual product design.Moreover,the knowledge extraction model introduces ALBERT to solve memory limitation and communication overhead in the entity extraction module,and uses multi-granularity information to overcome segmentation errors and polysemy ambiguity in the relation extraction module.Experimental comparison verified the effectiveness and accuracy of the proposed knowledge extraction model.The case study demonstrated the feasibility of the knowledge graph construction with real fragmentary porcelain data and showed the capability to provide designers with interconnected and visualised design knowledge.展开更多
Knowledge graph(KG)serves as a specialized semantic network that encapsulates intricate relationships among real-world entities within a structured framework.This framework facilitates a transformation in information ...Knowledge graph(KG)serves as a specialized semantic network that encapsulates intricate relationships among real-world entities within a structured framework.This framework facilitates a transformation in information retrieval,transitioning it from mere string matching to far more sophisticated entity matching.In this transformative process,the advancement of artificial intelligence and intelligent information services is invigorated.Meanwhile,the role ofmachine learningmethod in the construction of KG is important,and these techniques have already achieved initial success.This article embarks on a comprehensive journey through the last strides in the field of KG via machine learning.With a profound amalgamation of cutting-edge research in machine learning,this article undertakes a systematical exploration of KG construction methods in three distinct phases:entity learning,ontology learning,and knowledge reasoning.Especially,a meticulous dissection of machine learningdriven algorithms is conducted,spotlighting their contributions to critical facets such as entity extraction,relation extraction,entity linking,and link prediction.Moreover,this article also provides an analysis of the unresolved challenges and emerging trajectories that beckon within the expansive application of machine learning-fueled,large-scale KG construction.展开更多
文摘BACKGROUND Monkeypox(Mpox),is a disease of global public health concern,as it does not affect only countries in western and central Africa.AIM To assess Burundi healthcare workers(HCWs)s’level of knowledge and confidence in the diagnosis and management of Mpox.METHODS We conducted a cross-sectional study via an online survey designed mainly from the World Health Organization course distributed among Burundi HCWs from June-July 2023.The questionnaire comprises 8 socioprofessional-related questions,22 questions about Mpox disease knowledge,and 3 questions to assess confidence in Mpox diagnosis and management.The data were analyzed via SPSS software version 25.0.A P value<0.05 was considered to indicate statistical significance.RESULTS The study sample comprised 471 HCWs who were mainly medical doctors(63.9%)and nurses(30.1%).None of the 22 questions concerning Mpox knowledge had at least 50%correct responses.A very low number of HCWs(17.4%)knew that Mpox has a vaccine.The confidence level to diagnose(21.20%),treat(18.00%)or prevent(23.30%)Mpox was low among HCWs.The confidence level in the diagnosis of Mpox was associated with the HCWs’age(P value=0.009),sex(P value<0.001),work experience(P value=0.002),and residence(P value<0.001).The confidence level to treat Mpox was significantly associated with the HCWs’age(P value=0.050),sex(P value<0.001),education(P value=0.033)and occupation(P value=0.005).The confidence level to prevent Mpox was associated with the HCWs’education(P value<0.001),work experience(P value=0.002),residence(P value<0.001)and type of work institution(P value=0.003).CONCLUSION This study revealed that HCWs have the lowest level of knowledge regarding Mpox and a lack of confidence in the ability to diagnose,treat or prevent it.There is an urgent need to organize continuing medical education programs on Mpox epidemiology and preparedness for Burundi HCWs.We encourage future researchers to assess potential hesitancy toward Mpox vaccination and its associated factors.
文摘Based on the perception of knowledge management from experts specializing in different fields,and experts at home and abroad,the knowledge management of agricultural scientific research institution can build new platform,offer new approach for realization of explicit or tacit knowledge,and promote resilience and innovative ability of scientific research institution.The thesis has introduced functions of knowledge management research of agricultural science.First,it can transform the tacit knowledge into explicit knowledge.Second,it can make all the scientific personnel share knowledge.Third,it is beneficial to the development of prototype system of knowledge management.Fourth,it mainly researches the realization of knowledge management system.Fifth,it can manage the external knowledge via competitive intelligence.Sixth,it can foster talents of knowledge management for agricultural scientific research institution.Seventh,it offers the decision-making service for leaders to manage scientific program.The thesis also discusses the content of knowledge management of agricultural scientific research institution as follows:production and innovation of knowledge;attainment and organizing of knowledge;dissemination and share of knowledge;management of human resources and the construction and management of infrastructure.We have put forward corresponding countermeasures to further reinforce the knowledge management research of agricultural scientific research institution.
基金[This work was financially supported by the National Natural Science Foundation of China (No. 69835001).]
文摘A new algorithm for the knowledge discovery based on statistic inductionlogic is proposed, and the validity of the methods is verified by examples. The method is suitablefor a large range of knowledge discovery applications in the studying of causal relation,uncertainty knowledge acquisition and principal factors analyzing. The language filed description ofthe state space makes the algorithm robust in the adaptation with easier understandable results,which are isomotopy with natural language in the topologic space.
文摘As a core resource of scientific knowledge,academic documents have been frequently used by scholars,especially newcomers to a given field.In the era of big data,scientific documents such as academic articles,patents,technical reports,and webpages are booming.The rapid daily growth of scientific documents indicates that a large amount of knowledge is proposed,improved,and used(Zhang et al.,2021).
基金funded by the National Natural Science Foundation of China(nos.71603280,72074006,and 82070235)the Beijing Municipal Natural Science Foundation(7191013)+1 种基金Research Unit of Medical Science Research Management/Basic and Clinical Research of Metabolic Cardiovascular Diseases,Chinese Academy of Medical Sciences(2021RU003)Peking University Health Science Center and the Young Elite Scientists Sponsorship Program by China Association for Science and Technology(2017QNRC001).
文摘Purpose:Given the information overload of scientific literature,there is an increasing need for computable biomedical knowledge buried in free text.This study aimed to develop a novel approach to extracting and measuring uncertain biomedical knowledge from scientific statements.Design/methodology/approach:Taking cardiovascular research publications in China as a sample,we extracted subject-predicate-object triples(SPO triples)as knowledge units and unknown/hedging/conflicting uncertainties as the knowledge context.We introduced information entropy(IE)as potential metric to quantify the uncertainty of epistemic status of scientific knowledge represented at subject-object pairs(SO pairs)levels.Findings:The results indicated an extraordinary growth of cardiovascular publications in China while only a modest growth of the novel SPO triples.After evaluating the uncertainty of biomedical knowledge with IE,we identified the Top 10 SO pairs with highest IE,which implied the epistemic status pluralism.Visual presentation of the SO pairs overlaid with uncertainty provided a comprehensive overview of clusters of biomedical knowledge and contending topics in cardiovascular research.Research limitations:The current methods didn’t distinguish the specificity and probabilities of uncertainty cue words.The number of sentences surrounding a given triple may also influence the value of IE.Practical implications:Our approach identified major uncertain knowledge areas such as diagnostic biomarkers,genetic polymorphism and co-existing risk factors related to cardiovascular diseases in China.These areas are suggested to be prioritized;new hypotheses need to be verified,while disputes,conflicts,and contradictions need to be settled.Originality/value:We provided a novel approach by combining natural language processing and computational linguistics with informetric methods to extract and measure uncertain knowledge from scientific statements.
文摘The present work deals with the development of an Ontology-Based Knowledge Network of soil/water physicochemical & biological properties (soil/water concepts), derived from ASTM Standard Methods (ASTMi,n) and relevant scientific/applicable references (published papers—PPi,n) to fill up/bridge the gap of the information science between cited Standards and infiltration discipline conceptual vocabulary providing accordingly a dedicated/internal Knowledge Base (KB). This attempt constitutes an innovative approach, since it is based on externalizing domain knowledge in the form of Ontology-Based Knowledge Networks, incorporating standardized methodology in soil engineering. The ontology soil/water concepts (semantics) of the developed network correspond to soil/water physicochemical & biological properties, classified in seven different generations that are distinguished/located in infiltration/percolation process of contaminated water through soil porous media. The interconnections with arcs between corresponding concepts/properties among the consecutive generations are defined by the relationship of dependent and independent variables. All these interconnections are documented according to the below three ways: 1) dependent and independent variables interconnected by using the logical operator “<em>depends on</em>” quoting existent explicit functions and equations;2) dependent and independent variables interconnected by using the logical operator “<em>depends on</em>” quoting produced implicit functions, according to Rayleigh’s method of indices;3) dependent and independent variables interconnected by using the logical operator “<em>related to</em>” based on a logical dependence among the examined nodes-concepts-variables. The aforementioned approach provides significant advantages to semantic web developers and web users by means of prompt knowledge navigation, tracking, retrieval and usage.
文摘The acquisition of knowledge and the representation of that acquisition have always been viewed as the bottleneck in the construction of knowledge-based systems. The traditional methods of acquiring knowledge are based on knowledge engineering and communication with field experts. However, these methods cannot produce systematic knowledge effectively, automatically construct knowledge-based systems, or benefit knowledge reasoning. It has been noted that, in specific professional fields, experts often use fixed patterns to describe their expertise in the scientific articles that they publish. Abstracts and conclusions, for example, are key components of the scientific article, containing abundant field knowledge. This paper suggests a method of acquiring production rules from the abstracts and conclusions of scientific articles in specific fields based on natural language comprehension. First, the causal statements in article abstracts and conclusions are extracted using existing techniques, such as text mining. Next, antecedence and consequence fragments are extracted using causal template matching algorithms. As the final step, part-of-speech-tagging production rules are automatically generated according to a syntax parsing tree from the speech pair sequence. Experiments show that this system not only improves the efficiency of knowledge acquisition but also simultaneously generates systematic knowledge and guarantees the accuracy of acquired knowledge.
基金supported by the National Natural Science Foundation of China(Grant Nos.71003078and 70833005)sponsored by SRF for ROCS and SEM
文摘Co-word networks are constructed with author-provided keywords in academic publications and their relations of co-occurrence.As special form of scientific knowledge networks,they represent the cognitive structure of scientific literature.This paper analyzes the complex structure of a co-word network based on 8,190 author-provided keywords extracted from 3,651 papers in five Chinese core journals in the field of management science.Small-world and scale-free phenomena are found in this network.A large-scale co-word network graph,which consists of one major giant component and many small isolated components,has been generated with the GUESS software.The dynamic growth of keywords and keyword co-occurrence relationships are described with four new informetrics measures.The results indicate that existing concepts always serve as the intellectual base of new ideas as represented by keywords.
文摘The present article outlines progress made in designing an intelligent information system for automatic management and knowledge discovery in large numeric and scientific databases, with a validating application to the CAST-NEONS environmental databases used for ocean modeling and prediction. We describe a discovery-learning process (Automatic Data Analysis System) which combines the features of two machine learning techniques to generate sets of production rules that efficiently describe the observational raw data contained in the database. Data clustering allows the system to classify the raw data into meaningful conceptual clusters, which the system learns by induction to build decision trees, from which are automatically deduced the production rules.
文摘Introduction: We present the results of scientific and traditional knowledge, which were performed on students attending the School of Dental Surgery at the Faculty of Higher Studies Zaragoza UNAM and parents in the Milpa Alta policy delegation of the Federal District with the purpose to articulate such knowledge for planning oral health programs where the protection and promotion of oral health are prioritized. Method: This study was qualitative and quantitative, and 413 students of the career Dentist Faculty of Higher Studies Zaragoza UNAM and 2100 parents of twelve elementary school of the Milpa Alta delegation participated. Results: One of the results was that almost a third (28%) of the students go to the dentist only when they need to, however 40% of parents said they go to consultation only when they start to experience pain. Conclusion: It is important to articulate scientific knowledge with the traditional and famed in Odontology, for the operation alization of health programs attached to particular contexts where all stakeholders are involved to prevent oral problems.
文摘The Xiangshan Science Conference is an interdisciplinary, comprehensive and small-scale forum with a higher knowledge-level, which has offered a broad and relaxed environment of academic exchange and free discussion for scientists, and probed into scientific frontiers and the future in the form of comment and reports on special topics and deep discussions. The aim of the conference is
文摘Purpose:The goal of this study is to analyze the relationship between funded and unfunded papers and their citations in both basic and applied sciences.Design/methodology/approach:A power law model analyzes the relationship between research funding and citations of papers using 831,337 documents recorded in the Web of Science database.Findings:The original results reveal general characteristics of the diffusion of science in research fields:a)Funded articles receive higher citations compared to unfunded papers in journals;b)Funded articles exhibit a super-linear growth in citations,surpassing the increase seen in unfunded articles.This finding reveals a higher diffusion of scientific knowledge in funded articles.Moreover,c)funded articles in both basic and applied sciences demonstrate a similar expected change in citations,equivalent to about 1.23%,when the number of funded papers increases by 1%in journals.This result suggests,for the first time,that funding effect of scientific research is an invariant driver,irrespective of the nature of the basic or applied sciences.Originality/value:This evidence suggests empirical laws of funding for scientific citations that explain the importance of robust funding mechanisms for achieving impactful research outcomes in science and society.These findings here also highlight that funding for scientific research is a critical driving force in supporting citations and the dissemination of scientific knowledge in recorded documents in both basic and applied sciences.Practical implications:This comprehensive result provides a holistic view of the relationship between funding and citation performance in science to guide policymakers and R&D managers with science policies by directing funding to research in promoting the scientific development and higher diffusion of results for the progress of human society.
基金supported in part by the National Natural Science Foundation of China(62302161,62303361)the Postdoctoral Innovative Talent Support Program of China(BX20230114)。
文摘Dear Editor,This letter is concerned with visual perception closely related to heterogeneous images.Facing the huge challenge brought by different image modalities,we propose a visual perception framework based on heterogeneous image knowledge,i.e.,the domain knowledge associated with specific vision tasks,to better address the corresponding visual perception problems.
基金supported in part by the National Natural Science Foundation of China(62371116 and 62231020)in part by the Science and Technology Project of Hebei Province Education Department(ZD2022164)+2 种基金in part by the Fundamental Research Funds for the Central Universities(N2223031)in part by the Open Research Project of Xidian University(ISN24-08)Key Laboratory of Cognitive Radio and Information Processing,Ministry of Education(Guilin University of Electronic Technology,China,CRKL210203)。
文摘High-efficiency and low-cost knowledge sharing can improve the decision-making ability of autonomous vehicles by mining knowledge from the Internet of Vehicles(IoVs).However,it is challenging to ensure high efficiency of local data learning models while preventing privacy leakage in a high mobility environment.In order to protect data privacy and improve data learning efficiency in knowledge sharing,we propose an asynchronous federated broad learning(FBL)framework that integrates broad learning(BL)into federated learning(FL).In FBL,we design a broad fully connected model(BFCM)as a local model for training client data.To enhance the wireless channel quality for knowledge sharing and reduce the communication and computation cost of participating clients,we construct a joint resource allocation and reconfigurable intelligent surface(RIS)configuration optimization framework for FBL.The problem is decoupled into two convex subproblems.Aiming to improve the resource scheduling efficiency in FBL,a double Davidon–Fletcher–Powell(DDFP)algorithm is presented to solve the time slot allocation and RIS configuration problem.Based on the results of resource scheduling,we design a reward-allocation algorithm based on federated incentive learning(FIL)in FBL to compensate clients for their costs.The simulation results show that the proposed FBL framework achieves better performance than the comparison models in terms of efficiency,accuracy,and cost for knowledge sharing in the IoV.
基金financial supports from National Natural Science Foundation of China(No.62205172)Huaneng Group Science and Technology Research Project(No.HNKJ22-H105)Tsinghua University Initiative Scientific Research Program and the International Joint Mission on Climate Change and Carbon Neutrality。
文摘Laser-induced breakdown spectroscopy(LIBS)has become a widely used atomic spectroscopic technique for rapid coal analysis.However,the vast amount of spectral information in LIBS contains signal uncertainty,which can affect its quantification performance.In this work,we propose a hybrid variable selection method to improve the performance of LIBS quantification.Important variables are first identified using Pearson's correlation coefficient,mutual information,least absolute shrinkage and selection operator(LASSO)and random forest,and then filtered and combined with empirical variables related to fingerprint elements of coal ash content.Subsequently,these variables are fed into a partial least squares regression(PLSR).Additionally,in some models,certain variables unrelated to ash content are removed manually to study the impact of variable deselection on model performance.The proposed hybrid strategy was tested on three LIBS datasets for quantitative analysis of coal ash content and compared with the corresponding data-driven baseline method.It is significantly better than the variable selection only method based on empirical knowledge and in most cases outperforms the baseline method.The results showed that on all three datasets the hybrid strategy for variable selection combining empirical knowledge and data-driven algorithms achieved the lowest root mean square error of prediction(RMSEP)values of 1.605,3.478 and 1.647,respectively,which were significantly lower than those obtained from multiple linear regression using only 12 empirical variables,which are 1.959,3.718 and 2.181,respectively.The LASSO-PLSR model with empirical support and 20 selected variables exhibited a significantly improved performance after variable deselection,with RMSEP values dropping from 1.635,3.962 and 1.647 to 1.483,3.086 and 1.567,respectively.Such results demonstrate that using empirical knowledge as a support for datadriven variable selection can be a viable approach to improve the accuracy and reliability of LIBS quantification.
基金supported in part by the National Natural Science Foundation of China under Grant 72264036in part by the West Light Foundation of The Chinese Academy of Sciences under Grant 2020-XBQNXZ-020+1 种基金Social Science Foundation of Xinjiang under Grant 2023BGL077the Research Program for High-level Talent Program of Xinjiang University of Finance and Economics 2022XGC041,2022XGC042.
文摘Purpose:This paper aims to address the limitations in existing research on the evolution of knowledge flow networks by proposing a meso-level institutional field knowledge flow network evolution model(IKM).The purpose is to simulate the construction process of a knowledge flow network using knowledge organizations as units and to investigate its effectiveness in replicating institutional field knowledge flow networks.Design/Methodology/Approach:The IKM model enhances the preferential attachment and growth observed in scale-free BA networks,while incorporating three adjustment parameters to simulate the selection of connection targets and the types of nodes involved in the network evolution process Using the PageRank algorithm to calculate the significance of nodes within the knowledge flow network.To compare its performance,the BA and DMS models are also employed for simulating the network.Pearson coefficient analysis is conducted on the simulated networks generated by the IKM,BA and DMS models,as well as on the actual network.Findings:The research findings demonstrate that the IKM model outperforms the BA and DMS models in replicating the institutional field knowledge flow network.It provides comprehensive insights into the evolution mechanism of knowledge flow networks in the scientific research realm.The model also exhibits potential applicability to other knowledge networks that involve knowledge organizations as node units.Research Limitations:This study has some limitations.Firstly,it primarily focuses on the evolution of knowledge flow networks within the field of physics,neglecting other fields.Additionally,the analysis is based on a specific set of data,which may limit the generalizability of the findings.Future research could address these limitations by exploring knowledge flow networks in diverse fields and utilizing broader datasets.Practical Implications:The proposed IKM model offers practical implications for the construction and analysis of knowledge flow networks within institutions.It provides a valuable tool for understanding and managing knowledge exchange between knowledge organizations.The model can aid in optimizing knowledge flow and enhancing collaboration within organizations.Originality/value:This research highlights the significance of meso-level studies in understanding knowledge organization and its impact on knowledge flow networks.The IKM model demonstrates its effectiveness in replicating institutional field knowledge flow networks and offers practical implications for knowledge management in institutions.Moreover,the model has the potential to be applied to other knowledge networks,which are formed by knowledge organizations as node units.
文摘Background: Non-communicable diseases are increasing among adolescents. The decision about diet is the foundation of eating habits that could persist to adulthood. Dietary decisions, which usually are hard to change later in life, make nutrition education at school paramount to prevent obesity and NCDs, and promote healthy eating. Objectives: To assess level of nutrition awareness and knowledge of healthy eating and food intake behaviors and association with Body Mass Index (BMI) and age. Methods: A cross sectional study that included measures such as age, gender, socioeconomic status, BMI, and nutrition knowledge was conducted in 264 respondents from 18th June 2015 to 9th July 2015. The nutrition knowledge questionnaire was composed of 24 questions divided into food nutrients, food contents, healthiest foods, and energy expenditure and nutrition benefits. CDC BMI chart for 2-20-year-olds was used to plot respondent’s weight and height. Results: The mean age of the respondents was 14.3 years (SD 0.79). Most of the respondents (153/252, 53.6%) had a low socio-economic status as categorized by the present study. The mean (SD) BMI was 20.08 (3.90). Most respondents (56.3%, 142/252) failed the knowledge test and scored below 50% and only two respondents (0.8%) had excellent nutrition knowledge. The mean percentage achieved was 46.1% (SD 15.91) ranging from 8.3% to 87.5%. There was a significant correlation between nutrition knowledge and BMI (p = 0.001). Conclusion: The study shows that adolescents do not have adequate nutrition knowledge, placing them at risk for developing non-communicable diseases later in life. Nutrition education programs are urgently needed for teachers, parents, and children.
基金supported in part by the Science and Technology Innovation 2030-“New Generation of Artificial Intelligence”Major Project(No.2021ZD0111000)Henan Provincial Science and Technology Research Project(No.232102211039).
文摘The growing prevalence of knowledge reasoning using knowledge graphs(KGs)has substantially improved the accuracy and efficiency of intelligent medical diagnosis.However,current models primarily integrate electronic medical records(EMRs)and KGs into the knowledge reasoning process,ignoring the differing significance of various types of knowledge in EMRs and the diverse data types present in the text.To better integrate EMR text information,we propose a novel intelligent diagnostic model named the Graph ATtention network incorporating Text representation in knowledge reasoning(GATiT),which comprises text representation,subgraph construction,knowledge reasoning,and diagnostic classification.In the text representation process,GATiT uses a pre-trained model to obtain text representations of the EMRs and additionally enhances embeddings by including chief complaint information and numerical information in the input.In the subgraph construction process,GATiT constructs text subgraphs and disease subgraphs from the KG,utilizing EMR text and the disease to be diagnosed.To differentiate the varying importance of nodes within the subgraphs features such as node categories,relevance scores,and other relevant factors are introduced into the text subgraph.Themessage-passing strategy and attention weight calculation of the graph attention network are adjusted to learn these features in the knowledge reasoning process.Finally,in the diagnostic classification process,the interactive attention-based fusion method integrates the results of knowledge reasoning with text representations to produce the final diagnosis results.Experimental results on multi-label and single-label EMR datasets demonstrate the model’s superiority over several state-of-theart methods.
基金This research is supported by the Chinese Special Projects of the National Key Research and Development Plan(2019YFB1405702).
文摘The acquisition of valuable design knowledge from massive fragmentary data is challenging for designers in conceptual product design.This study proposes a novel method for acquiring design knowledge by combining deep learning with knowledge graph.Specifically,the design knowledge acquisition method utilises the knowledge extraction model to extract design-related entities and relations from fragmentary data,and further constructs the knowledge graph to support design knowledge acquisition for conceptual product design.Moreover,the knowledge extraction model introduces ALBERT to solve memory limitation and communication overhead in the entity extraction module,and uses multi-granularity information to overcome segmentation errors and polysemy ambiguity in the relation extraction module.Experimental comparison verified the effectiveness and accuracy of the proposed knowledge extraction model.The case study demonstrated the feasibility of the knowledge graph construction with real fragmentary porcelain data and showed the capability to provide designers with interconnected and visualised design knowledge.
基金supported in part by the Beijing Natural Science Foundation under Grants L211020 and M21032in part by the National Natural Science Foundation of China under Grants U1836106 and 62271045in part by the Scientific and Technological Innovation Foundation of Foshan under Grants BK21BF001 and BK20BF010。
文摘Knowledge graph(KG)serves as a specialized semantic network that encapsulates intricate relationships among real-world entities within a structured framework.This framework facilitates a transformation in information retrieval,transitioning it from mere string matching to far more sophisticated entity matching.In this transformative process,the advancement of artificial intelligence and intelligent information services is invigorated.Meanwhile,the role ofmachine learningmethod in the construction of KG is important,and these techniques have already achieved initial success.This article embarks on a comprehensive journey through the last strides in the field of KG via machine learning.With a profound amalgamation of cutting-edge research in machine learning,this article undertakes a systematical exploration of KG construction methods in three distinct phases:entity learning,ontology learning,and knowledge reasoning.Especially,a meticulous dissection of machine learningdriven algorithms is conducted,spotlighting their contributions to critical facets such as entity extraction,relation extraction,entity linking,and link prediction.Moreover,this article also provides an analysis of the unresolved challenges and emerging trajectories that beckon within the expansive application of machine learning-fueled,large-scale KG construction.