We investigate how firing activity of globally coupled neural network depends on the coupling strength C and system size N. Network elements are described by space-clamped FitzHugh- Nagumo (SCFHN) neurons with the v...We investigate how firing activity of globally coupled neural network depends on the coupling strength C and system size N. Network elements are described by space-clamped FitzHugh- Nagumo (SCFHN) neurons with the values of parameters at which no firing activity occurs. It is found that for a given appropriate coupling strength, there is an intermediate range of system size where the firing activity of globally coupled SCFHN neural network is induced and enhanced. On the other hand, for a given intermediate system size level, there exists an optimal value of coupling strength such that the intensity of firing activity reaches its maximum. These phenomena imply that the coupling strength and system size play a vital role in firing activity of neural network.展开更多
The influence of internal noise on the calcium oscillations is studied. It is found that stochastic calcium oscillations occur when the internal noise is considered, while the corresponding deterministic dynamics only...The influence of internal noise on the calcium oscillations is studied. It is found that stochastic calcium oscillations occur when the internal noise is considered, while the corresponding deterministic dynamics only yields a steady state. Also,. the performance of such oscillations shows two maxima with the variation of the system size, indicating the occurrence of system size resonance. This behavior is found to be intimately connected with the canard phenomenon. Interestingly, it is also found that one of the optimal system sizes matches well with the real cell size, and such a match is robust to the variation of the control parameters.展开更多
Abstract: In this comprehensive study the multiplicity characteristics of the backward emitted relativistic hadron (shower particle) through hadron-nucleus and nucleus-nucleus are overviewed in three dimensions. Th...Abstract: In this comprehensive study the multiplicity characteristics of the backward emitted relativistic hadron (shower particle) through hadron-nucleus and nucleus-nucleus are overviewed in three dimensions. These dimensions are the projectile size, target size, and energy. To confirm the universality in this production system, wide ranges of system size and energy (Elab~2.1 A up to 200 A GeV) are used. The multiplicity characteristics of this hadron imply a limiting behavior with respect to the projectile size and energy. The target size is the main effective parameter in this production system. The exponential decay shapes is a characteristic feature of the backward shower particle multiplicity distributions. The decay constant changes with the target size to be nearly 2.02, 1.41, and 1.12 for the interactions with CNO, Era, and AgBr nuclei, respectively, irrespective of the projectile size and energy. While the backward production probability and average multiplicity are constants at different projectile sizes and energies, they can be correlated with the target size in power law relations.展开更多
Using a dynamical Langevin equation coupled with a statistical decay model, we calculate the excess of the pre-scission neutron multiplicities over its standard statistical-model values as a function of the nuclear di...Using a dynamical Langevin equation coupled with a statistical decay model, we calculate the excess of the pre-scission neutron multiplicities over its standard statistical-model values as a function of the nuclear dissipation strength for the three nuclei 19~Os, 2~~Hg, and 21~po which have the same neutron-to-proton ratio N/Z. We find that by decreasing the size of the fissioning nuclei, the effects of nuclear dissipation on the excess of the pre-scission neutron multiplicity are substantially amplified, and that the sensitivity of this excess to the nuclear friction strength is considerably increased as well. We suggest that for those fissioning systems with the same N/Z that are populated in fusion reactions, to obtain a more accurate information of the nuclear dissipation strength by measuring the pre-scission neutron multiplicity, it is best to choose a system with a small size.展开更多
System size is more than a geometrical quantity in relativistic heavy ion collisions; it is closely related to evolution process, i.e. a different system size corresponds to a different evolution process, and whether ...System size is more than a geometrical quantity in relativistic heavy ion collisions; it is closely related to evolution process, i.e. a different system size corresponds to a different evolution process, and whether QGP is produced depends on the system size. We propose that the system size should be under the same level when comparing the measurements from different colliding nuclei. The equivalence of the peripheral collisions of Au-Au and the central collisions of smaller nuclei is studied using the Monte Carlo method. Comparing the transverse overlapping area of the colliding nuclei, the number of participant nucleons and the number of nucleon-nucleon binary collisions in various colliding nuclei, we give an estimate of the correspondence in system size. This is helpful in the experimental comparison of the measurements from different colliding nuclei.展开更多
By the intracellular calcium ionic minimal model proposed by Berridge, we investigated the collective response of two-dimensional (N×N) coupled cell systems to the external stimulation using numerical simulation ...By the intracellular calcium ionic minimal model proposed by Berridge, we investigated the collective response of two-dimensional (N×N) coupled cell systems to the external stimulation using numerical simulation methods. With a coupled intensity fixed and an appropriate coupled cell number chosen, the kinetic system size resonance was discovered. At the same time, it was found that the system size responding to the external stimulation for different coupled intensities transferred too, especially when the coupled intensity increased, the range of the corresponding system size extended. These phe- nomena illustrate that the coupled cell number and the coupled intensity can play con- structive roles in noisy coupled systems, by which the biology system would probably improve its capability to respond to the external stimulation.展开更多
A parallel arithmetic program for the molecular dynamics (MD) simulation study of a large sized system consisting of 50 000100 000 atoms of liquid metals is reformed, based on the cascade arithmetic program used for t...A parallel arithmetic program for the molecular dynamics (MD) simulation study of a large sized system consisting of 50 000100 000 atoms of liquid metals is reformed, based on the cascade arithmetic program used for the molecular dynamics simulation study of a small sized system consisting of 5001 000 atoms. The program is used to simulate the rapid solidification processes of liquid metal Al system. Some new results, such as larger clusters composed of more than 36 smaller clusters (icosahedra or defect icosahedra) obtained in the system of 50 000 atoms, however, the larger clusters can not be seen in the small sized system of 5001 000 atoms. On the other hand, the results from this simulation study would be more closed to the real situation of the system under consideration because the influence of boundary conditions is decreased remarkably. It can be expected that from the parallel algorithm combined with the higher performance super computer, the total number of atoms in simulation system can be enlarged again up to tens, even hundreds times in the near future.展开更多
Ethiopia is among the poorest countries in which poverty, land and resource degradation appear to feed off each other. The irony is that Ethiopia is a country with high biodiversity and distinctive ecosystems and the ...Ethiopia is among the poorest countries in which poverty, land and resource degradation appear to feed off each other. The irony is that Ethiopia is a country with high biodiversity and distinctive ecosystems and the natural resource base is critical to the economy and the livelihood of a high percentage of the population. Being the owner of varying agro ecology, the country’s agricultural production system had practiced for decades with a maximum potential. However, because of the presence of interrelated problems, the productivity had not sustained as its potential. From the interrelated problems, land degradation takes the first and challengeable problem in many countries. Land degradation refers to a temporary or permanent decline in the productive capacity of the land, or its potential for environmental management as a result;the long-term biological and environmental potential of the land has been compromised. Land degradation in the Ethiopian highlands (i.e. areas above 1500 m.a.s.l.) has been a concern for many years and is a great threat for the future that requires great effort and resources to ameliorate. It had adverse effect on lowering of livestock production by shrinking grazing land, the fertile soil types were washed and the grazing land was dominantly covered by unpalatable pastures and grasses which had low nutritive value and fertility for crop-livestock production system. In other cases, degradation induces farmers to convert land to lower-value uses;for instance, cropland converted to grazing land, or grazing lands converted to shrubs or forests. Equitable and secure access to land is a critical factor for the rural poor, especially livestock owners, who depend on agriculture and animal-related activities for their livelihood. Having secure access to land for agriculture and pastoral activities reduces their vulnerability and enhances their opportunities to invest in land for agriculture and livestock activities. Historical patterns of feudal ownership of land followed by government ownership and despite policy change uncertain status of land ownership. These land distribution and ownership patterns coupled with continuous fragmentations and degradation disrupt the balance between crop, livestock, and forest production. These things nowadays enforce Ethiopian farmers to put more land into crop production than working on livestock sector. Livelihoods are complex, dependent on animal and crop production based on land and water resources, with emerging market opportunities. And from year to year, the size of farms is getting minimized because of land degradation and segmentations, and these make a change in farm size dynamics and farming shift. Currently, there is a great scenario towards the land policy pattern and agricultural production system, which is the backbone of the country’s economy. Therefore, the aim of this paper is to review the effect of land degradation on farm size dynamics and crop-livestock production since the impact of these things is not well measured.展开更多
The coupling effects of depletion interactions in three-sphere systems with different size ratio of large- to small-sphere are studied by Monte Carlosimulations in this paper. The numerical results show that this coup...The coupling effects of depletion interactions in three-sphere systems with different size ratio of large- to small-sphere are studied by Monte Carlosimulations in this paper. The numerical results show that this coupling effect is affected by the size ratio of large- to small-sphere: the larger the size ratio is, the larger the coupling effect will be.展开更多
The effects of random long-range connections (shortcuts) on the transitions of neural firing patterns in coupled Hindmarsh-Rose neurons are investigated, where each neuron is subjected to an external current. It is ...The effects of random long-range connections (shortcuts) on the transitions of neural firing patterns in coupled Hindmarsh-Rose neurons are investigated, where each neuron is subjected to an external current. It is found that, on one hand, the system can achieve the transition of neural firing patterns from the fewer-period state to the multi-period one, when the number of the added shortcuts in the neural network is greater than a threshold value, indicating the occurrence of in-transition of neural firing patterns. On the other hand, for a stronger coupling strength, we can also find the similar but reverse results by adding some proper random connections. In addition, the influences of system size and coupling strength on such transition behavior, as well as the internality between the transition degree of firing patterns and its critical characteristics for different external stimulation current, are also discussed.展开更多
最大功率点跟踪技术(Maximum Power Point Tracking, MPPT)是光伏发电系统中关键技术研究的热点之一。针对传统扰动观察法跟踪速度和精度无法兼顾的问题,文中提出了一种以功率变化量为步长控制量的自适应变步长扰动观察法,通过判断功率...最大功率点跟踪技术(Maximum Power Point Tracking, MPPT)是光伏发电系统中关键技术研究的热点之一。针对传统扰动观察法跟踪速度和精度无法兼顾的问题,文中提出了一种以功率变化量为步长控制量的自适应变步长扰动观察法,通过判断功率变化趋势,对远离最大功率点,采用大步长逼近;靠近最大功率点,采用小步长逼近。建立太阳能光伏电池数学模型得到其输出特性曲线,再利用MATLAB/Simulink搭建基于Boost电路的MPPT仿真模型,最后经仿真验证了所提出算法的稳定性、快速性和准确性,它比传统算法具有更好的MPPT暂态性能。展开更多
For the first time, a relationship between ESR signal intensity and grain size distribution (sieve technique) in shear zones within the Atotsugawa fault system have been investigated using fault core rocks. The grain ...For the first time, a relationship between ESR signal intensity and grain size distribution (sieve technique) in shear zones within the Atotsugawa fault system have been investigated using fault core rocks. The grain size distributions were estimated using the sieve technique and microscopic observations. Stacks of sieves with openings that decrease consecutively in the order of 4.75 mm, 1.18 mm, 600 μm, 300 μm, 150 μm and 75 μm were chosen for this study. Grain size distributions analysis revealed that samples further from the slip plane have larger d50 (average gain size) (0.45 mm at a distance of 30 - 50 mm from the slip plane) while those close to the slip plane have smaller d50 values (0.19 mm at a distance of 0 - 10 mm from the slip plane). This is due to intensive crushing that is always associated with large displacement during fault activities. However, this pattern was not respected in all shear zones in that, larger d50 values were instead observed in samples close to the slip plane due to admixture of fault rocks from different fault activities. Results from ESR analysis revealed that the relatively finer samples close to the slip plane have low ESR signals intensity while those further away (coarser) have relatively higher signal intensity. This tendency however, is not consistence in some of the shear zones due to a complex network of anatomizing faults. The variation in grain size distribution within some of the shear zones implies that, a series of fault events have taken place in the past thus underscoring the need for further investigation of the possibility of reoccurrence of faults.展开更多
基金National Natural Science Foundation of China under Grant Nos.70571017 and 10647001Natural Science Foundation of Guangxi Province under Grant No,0728042
文摘We investigate how firing activity of globally coupled neural network depends on the coupling strength C and system size N. Network elements are described by space-clamped FitzHugh- Nagumo (SCFHN) neurons with the values of parameters at which no firing activity occurs. It is found that for a given appropriate coupling strength, there is an intermediate range of system size where the firing activity of globally coupled SCFHN neural network is induced and enhanced. On the other hand, for a given intermediate system size level, there exists an optimal value of coupling strength such that the intensity of firing activity reaches its maximum. These phenomena imply that the coupling strength and system size play a vital role in firing activity of neural network.
基金ACKNOWLEDGMENTS This work was supported by the National Natural Science Foundation of China (No.20433050 and No.20673106).
文摘The influence of internal noise on the calcium oscillations is studied. It is found that stochastic calcium oscillations occur when the internal noise is considered, while the corresponding deterministic dynamics only yields a steady state. Also,. the performance of such oscillations shows two maxima with the variation of the system size, indicating the occurrence of system size resonance. This behavior is found to be intimately connected with the canard phenomenon. Interestingly, it is also found that one of the optimal system sizes matches well with the real cell size, and such a match is robust to the variation of the control parameters.
文摘Abstract: In this comprehensive study the multiplicity characteristics of the backward emitted relativistic hadron (shower particle) through hadron-nucleus and nucleus-nucleus are overviewed in three dimensions. These dimensions are the projectile size, target size, and energy. To confirm the universality in this production system, wide ranges of system size and energy (Elab~2.1 A up to 200 A GeV) are used. The multiplicity characteristics of this hadron imply a limiting behavior with respect to the projectile size and energy. The target size is the main effective parameter in this production system. The exponential decay shapes is a characteristic feature of the backward shower particle multiplicity distributions. The decay constant changes with the target size to be nearly 2.02, 1.41, and 1.12 for the interactions with CNO, Era, and AgBr nuclei, respectively, irrespective of the projectile size and energy. While the backward production probability and average multiplicity are constants at different projectile sizes and energies, they can be correlated with the target size in power law relations.
基金Supported by National Natural Science Foundation of China (10405007)Scientific Research Foundation of the Ministry of Education of China for Returned Overseas Scholars
文摘Using a dynamical Langevin equation coupled with a statistical decay model, we calculate the excess of the pre-scission neutron multiplicities over its standard statistical-model values as a function of the nuclear dissipation strength for the three nuclei 19~Os, 2~~Hg, and 21~po which have the same neutron-to-proton ratio N/Z. We find that by decreasing the size of the fissioning nuclei, the effects of nuclear dissipation on the excess of the pre-scission neutron multiplicity are substantially amplified, and that the sensitivity of this excess to the nuclear friction strength is considerably increased as well. We suggest that for those fissioning systems with the same N/Z that are populated in fusion reactions, to obtain a more accurate information of the nuclear dissipation strength by measuring the pre-scission neutron multiplicity, it is best to choose a system with a small size.
基金Supported by National Natural Science Foundation of China (10775056, 10835005, 11005045)
文摘System size is more than a geometrical quantity in relativistic heavy ion collisions; it is closely related to evolution process, i.e. a different system size corresponds to a different evolution process, and whether QGP is produced depends on the system size. We propose that the system size should be under the same level when comparing the measurements from different colliding nuclei. The equivalence of the peripheral collisions of Au-Au and the central collisions of smaller nuclei is studied using the Monte Carlo method. Comparing the transverse overlapping area of the colliding nuclei, the number of participant nucleons and the number of nucleon-nucleon binary collisions in various colliding nuclei, we give an estimate of the correspondence in system size. This is helpful in the experimental comparison of the measurements from different colliding nuclei.
文摘By the intracellular calcium ionic minimal model proposed by Berridge, we investigated the collective response of two-dimensional (N×N) coupled cell systems to the external stimulation using numerical simulation methods. With a coupled intensity fixed and an appropriate coupled cell number chosen, the kinetic system size resonance was discovered. At the same time, it was found that the system size responding to the external stimulation for different coupled intensities transferred too, especially when the coupled intensity increased, the range of the corresponding system size extended. These phe- nomena illustrate that the coupled cell number and the coupled intensity can play con- structive roles in noisy coupled systems, by which the biology system would probably improve its capability to respond to the external stimulation.
文摘A parallel arithmetic program for the molecular dynamics (MD) simulation study of a large sized system consisting of 50 000100 000 atoms of liquid metals is reformed, based on the cascade arithmetic program used for the molecular dynamics simulation study of a small sized system consisting of 5001 000 atoms. The program is used to simulate the rapid solidification processes of liquid metal Al system. Some new results, such as larger clusters composed of more than 36 smaller clusters (icosahedra or defect icosahedra) obtained in the system of 50 000 atoms, however, the larger clusters can not be seen in the small sized system of 5001 000 atoms. On the other hand, the results from this simulation study would be more closed to the real situation of the system under consideration because the influence of boundary conditions is decreased remarkably. It can be expected that from the parallel algorithm combined with the higher performance super computer, the total number of atoms in simulation system can be enlarged again up to tens, even hundreds times in the near future.
文摘Ethiopia is among the poorest countries in which poverty, land and resource degradation appear to feed off each other. The irony is that Ethiopia is a country with high biodiversity and distinctive ecosystems and the natural resource base is critical to the economy and the livelihood of a high percentage of the population. Being the owner of varying agro ecology, the country’s agricultural production system had practiced for decades with a maximum potential. However, because of the presence of interrelated problems, the productivity had not sustained as its potential. From the interrelated problems, land degradation takes the first and challengeable problem in many countries. Land degradation refers to a temporary or permanent decline in the productive capacity of the land, or its potential for environmental management as a result;the long-term biological and environmental potential of the land has been compromised. Land degradation in the Ethiopian highlands (i.e. areas above 1500 m.a.s.l.) has been a concern for many years and is a great threat for the future that requires great effort and resources to ameliorate. It had adverse effect on lowering of livestock production by shrinking grazing land, the fertile soil types were washed and the grazing land was dominantly covered by unpalatable pastures and grasses which had low nutritive value and fertility for crop-livestock production system. In other cases, degradation induces farmers to convert land to lower-value uses;for instance, cropland converted to grazing land, or grazing lands converted to shrubs or forests. Equitable and secure access to land is a critical factor for the rural poor, especially livestock owners, who depend on agriculture and animal-related activities for their livelihood. Having secure access to land for agriculture and pastoral activities reduces their vulnerability and enhances their opportunities to invest in land for agriculture and livestock activities. Historical patterns of feudal ownership of land followed by government ownership and despite policy change uncertain status of land ownership. These land distribution and ownership patterns coupled with continuous fragmentations and degradation disrupt the balance between crop, livestock, and forest production. These things nowadays enforce Ethiopian farmers to put more land into crop production than working on livestock sector. Livelihoods are complex, dependent on animal and crop production based on land and water resources, with emerging market opportunities. And from year to year, the size of farms is getting minimized because of land degradation and segmentations, and these make a change in farm size dynamics and farming shift. Currently, there is a great scenario towards the land policy pattern and agricultural production system, which is the backbone of the country’s economy. Therefore, the aim of this paper is to review the effect of land degradation on farm size dynamics and crop-livestock production since the impact of these things is not well measured.
文摘The coupling effects of depletion interactions in three-sphere systems with different size ratio of large- to small-sphere are studied by Monte Carlosimulations in this paper. The numerical results show that this coupling effect is affected by the size ratio of large- to small-sphere: the larger the size ratio is, the larger the coupling effect will be.
文摘The effects of random long-range connections (shortcuts) on the transitions of neural firing patterns in coupled Hindmarsh-Rose neurons are investigated, where each neuron is subjected to an external current. It is found that, on one hand, the system can achieve the transition of neural firing patterns from the fewer-period state to the multi-period one, when the number of the added shortcuts in the neural network is greater than a threshold value, indicating the occurrence of in-transition of neural firing patterns. On the other hand, for a stronger coupling strength, we can also find the similar but reverse results by adding some proper random connections. In addition, the influences of system size and coupling strength on such transition behavior, as well as the internality between the transition degree of firing patterns and its critical characteristics for different external stimulation current, are also discussed.
文摘最大功率点跟踪技术(Maximum Power Point Tracking, MPPT)是光伏发电系统中关键技术研究的热点之一。针对传统扰动观察法跟踪速度和精度无法兼顾的问题,文中提出了一种以功率变化量为步长控制量的自适应变步长扰动观察法,通过判断功率变化趋势,对远离最大功率点,采用大步长逼近;靠近最大功率点,采用小步长逼近。建立太阳能光伏电池数学模型得到其输出特性曲线,再利用MATLAB/Simulink搭建基于Boost电路的MPPT仿真模型,最后经仿真验证了所提出算法的稳定性、快速性和准确性,它比传统算法具有更好的MPPT暂态性能。
文摘For the first time, a relationship between ESR signal intensity and grain size distribution (sieve technique) in shear zones within the Atotsugawa fault system have been investigated using fault core rocks. The grain size distributions were estimated using the sieve technique and microscopic observations. Stacks of sieves with openings that decrease consecutively in the order of 4.75 mm, 1.18 mm, 600 μm, 300 μm, 150 μm and 75 μm were chosen for this study. Grain size distributions analysis revealed that samples further from the slip plane have larger d50 (average gain size) (0.45 mm at a distance of 30 - 50 mm from the slip plane) while those close to the slip plane have smaller d50 values (0.19 mm at a distance of 0 - 10 mm from the slip plane). This is due to intensive crushing that is always associated with large displacement during fault activities. However, this pattern was not respected in all shear zones in that, larger d50 values were instead observed in samples close to the slip plane due to admixture of fault rocks from different fault activities. Results from ESR analysis revealed that the relatively finer samples close to the slip plane have low ESR signals intensity while those further away (coarser) have relatively higher signal intensity. This tendency however, is not consistence in some of the shear zones due to a complex network of anatomizing faults. The variation in grain size distribution within some of the shear zones implies that, a series of fault events have taken place in the past thus underscoring the need for further investigation of the possibility of reoccurrence of faults.