In the paper a referral system to assist the medical experts in the screening/referral of diabetic retinopathy is suggested. The system has been developed by a sequential use of different existing mathematical techniq...In the paper a referral system to assist the medical experts in the screening/referral of diabetic retinopathy is suggested. The system has been developed by a sequential use of different existing mathematical techniques. These techniques involve speeded up robust features(SURF), K-means clustering and visual dictionaries(VD). Three databases are mixed to test the working of the system when the sources are dissimilar. When experiments were performed an area under the curve(AUC) of 0.9343 was attained. The results acquired from the system are promising.展开更多
In this study, the intrinsic mechanism of aerodynamic effects on the motion stability of a high-speed maglev system was investigated. The concept of a critical speed for maglev vehicles considering the aerodynamic eff...In this study, the intrinsic mechanism of aerodynamic effects on the motion stability of a high-speed maglev system was investigated. The concept of a critical speed for maglev vehicles considering the aerodynamic effect is proposed. The study was carried out based on a single magnetic suspension system, which is convenient for proposing relevant concepts and obtaining explicit expressions. This study shows that the motion stability of the suspension system is closely related to the vehicle speed when aerodynamic effects are considered. With increases of the vehicle speed, the stability behavior of the system changes. At a certain vehicle speed,the stability of the system reaches a critical state, followed by instability. The speed corresponding to the critical state is the critical speed. Analysis reveals that when the system reaches the critical state, it takes two forms, with two critical speeds, and thus two expressions for the critical speed are obtained. The conditions of the existence of the critical speed were determined, and the effects of the control parameters and the lift coefficient on the critical speed were analyzed by numerical analysis. The results show that the first critical speed appears when the aerodynamic force is upward,and the second critical speed appears when the aerodynamic force is downward. Moreover, both critical speeds decrease with the increase of the lift coefficient.展开更多
Pantograph system of high-speed trains become significant source of aerodynamic noise when travelling speed exceeds 300 km/h. In this paper, a hybrid method of non-linear acoustic solver (NLAS) and Ffowcs Williams-H...Pantograph system of high-speed trains become significant source of aerodynamic noise when travelling speed exceeds 300 km/h. In this paper, a hybrid method of non-linear acoustic solver (NLAS) and Ffowcs Williams-Hawkings (FW-H) acoustic analogy is used to predict the aerodynamic noise of pantograph system in this speed range. When the simulation method is validated by a benchmark problem of flows around a cylinder of finite span, we calculate the near flow field and far acoustic field surrounding the pantograph system. And then, the frequency spectra and acoustic attenuation with distance are analyzed, showing that the pantograph system noise is a typical broadband one with most acoustic power restricted in the medium-high frequency range from 200 Hz to 5 kHz. The aerodynamic noise of pantograph systems radiates outwards in the form of spherical waves in the far field. Analysis of the overall sound pressure level (OASPL) at different speeds exhibits that the acoustic power grows approximately as the 4th power of train speed. The comparison of noise reduction effects for four types of pantograph covers demonstrates that only case 1 can lessen the total noise by about 3 dB as baffles on both sides can shield sound wave in the spanwise direction. The covers produce additional aerodynamic noise themselves in the other three cases and lead to the rise of OASPLs.展开更多
The dynamical behaviors of logistic map(May's model) and duffing equation are studied through fractal dimension of time series at different parameters. It is shown that the parameters of dynamical behaviors can be ...The dynamical behaviors of logistic map(May's model) and duffing equation are studied through fractal dimension of time series at different parameters. It is shown that the parameters of dynamical behaviors can be identified effectively by the curve of fractal dimension with parameter increments. For further verification, the relation between the fractional dimension of time series and rotational speed can be used to identify critical speed effectively by using this method to a plate Jeffoctt rotor system. The numerical and experimental result indicates that the identification of critical parameters is effective.展开更多
This study addresses sustainable transportation in the Texas Urban Triangle at the regional scale. Its aim is to determine the most suitable corridor for new transport infrastructure by employing a spatial decision su...This study addresses sustainable transportation in the Texas Urban Triangle at the regional scale. Its aim is to determine the most suitable corridor for new transport infrastructure by employing a spatial decision support system proposed in this project. The system is being tested through its application to a prototype corridor parallel to Interstate 35 between San Antonio and Austin. The basic research questions asked are spatial in nature, so accordingly the geographic information system is the primary method of data analysis. The overall modeling approach is devoted to answering the following questions: What are the considerations to support sustainable growth? What scale or type of infrastructure is necessary? And how to adequately model the transportation corridors to meet the demands and to sustain the living environment at the same time?展开更多
A finite element vibration model of a multiple wheel-rail system which consists of four wheels, one rail, and a series of sleepers is established to address the problem of rail corrugation in high-speed tracks. In the...A finite element vibration model of a multiple wheel-rail system which consists of four wheels, one rail, and a series of sleepers is established to address the problem of rail corrugation in high-speed tracks. In the model, the creep forces between the wheels and rail are considered to be saturated and equal to the normal contact forces times the friction coefficient. The oscillation of the rail is coupled with that of wheels in the action of the saturated creep forces. When the coupling is strong, self- excited oscillation of the wheel-rail system occurs. The self-excited vibration propensity of the model is analyzed using the complex eigenvalue method. Results show that there are strong propensities of unstable self-excited vibrations whose frequencies are less than 1,200 Hz under some conditions. Preventing wheels from slipping on rails is an effective method for suppressing rail corrugation in high-speed tracks.展开更多
With the development of current electronic technology, numerous high-speed data acquisition systems provide a variety of potential benefits. This article describes a high-speed data acquisition system which consists o...With the development of current electronic technology, numerous high-speed data acquisition systems provide a variety of potential benefits. This article describes a high-speed data acquisition system which consists of ECL logic and TTL logic devices, samples and stores data with a 1 GHz clock. This system is accomplished easily and works stably. A performance test of this system has been undertaken and the results show that the effective number of bits (ENOB) is more than 6.5 bits.展开更多
In this paper the authors present an analysis and the implementation of microprocessor-baseddigital phase-locked loop speed control system for an induction motor which is actuated by aSPWM-GTR inverter.The system is c...In this paper the authors present an analysis and the implementation of microprocessor-baseddigital phase-locked loop speed control system for an induction motor which is actuated by aSPWM-GTR inverter.The system is controlled by a 16-bit single chip microprocessor.A new type of frequency and phase detector is presented in detail,An adaptive method isadopted in speed controller.A three mode control scheme is used.These techniques are very use-ful to the improvement of the dynamic behavior of digital AC motor drive system.Experimental results show that the system is of good stability,high precision and good dynam-ic performance.展开更多
Pixel-parallel PE and SIMD architectures are widely used in high-speed image processing to enhance computing power. With fully exploiting the data level parallelism of low- and middle-level image processing, SIMD arch...Pixel-parallel PE and SIMD architectures are widely used in high-speed image processing to enhance computing power. With fully exploiting the data level parallelism of low- and middle-level image processing, SIMD architecture is able to finish great amount of computation with much less instruction cycle thus satisfy the high-speed system requirement. The main computation parts in those SIMD image processing hardware is known as PE (processing element) and it is responsible for transferring, storing and processing the image data. This paper describes a high-speed vision system with superscalar PE to enhance system performance and its dedicated parallel computing language specifically devel-oped for this vision system. The vision system can achieve motion detection at more than 2000fps and face detection at more than 100 fps which overwhelms some general serial CPUs in the same applications.展开更多
A new kind of dynamic neural network--diagonal recurrent neural network (DRNN) and its learning method and architecture are presented. A direct adaptive control scheme is also developed that is applied to a DC (Direct...A new kind of dynamic neural network--diagonal recurrent neural network (DRNN) and its learning method and architecture are presented. A direct adaptive control scheme is also developed that is applied to a DC (Direct Current) speed control system with the ability to auto-tune PI (Proportion Integral) parameters based on combining DRNN with PI controller. The simulation results of DRNN show better control performances and potential practical use in comparison with PI controller.展开更多
The wheel-rail contact problems, such as the number, location and the track of contact patches, are very important for optimizing the spatial structure of the rails and lowering the vehicle-turnout system dynamics. Ho...The wheel-rail contact problems, such as the number, location and the track of contact patches, are very important for optimizing the spatial structure of the rails and lowering the vehicle-turnout system dynamics. However, the above problems are not well solved currently because of having the difficulties in how to determine the multi-contact, to preciously present the changeable profiles of the rails and to establish an accurate spatial turnout system dynamics model. Based on a high-speed vehicle-turnout coupled model in which the track is modeled as flexible with rails and sleepers represented by beams, the line tracing extreme point method is introduced to investigate the wheel-rail multiple contact conditions and the key sections of the blade rail, longer nose rail, shorter rail in the switch and nose rail area are discretized to represent the varying profiles of rails in the turnout. The dynamic interaction between the vehicle and turnout is simulated for cases of the vehicle divergently passing the turnout and the multi-point contact is obtained. The tracks of the contact patches on the top of the rails are presented and the wheel-rail impact forces are offered in comparison with the contact patches transference on the rails. The numerical simulation results indicate that the length of two-point contact occurrence of a worn wheel profile and rails is longer than that of the new wheel profile and rails; The two-point contact definitely occurs in the switch and crossing area. Generally, three-point contact doesn’t occur for the new rail profile, which is testified by the wheel-rails interpolation distance and the first order derivative function of the tracing line extreme points. The presented research is not only helpful to optimize the structure of the turnout, but also useful to lower the dynamics of the high speed vehicle-turnout system.展开更多
This paper proposes the current search (CS) metaheuristics conceptualized from the electric current flowing through electric networks for optimization problems with continuous design variables. The CS algorithm posses...This paper proposes the current search (CS) metaheuristics conceptualized from the electric current flowing through electric networks for optimization problems with continuous design variables. The CS algorithm possesses two powerful strategies, exploration and exploitation, for searching the global optimum. Based on the stochastic process, the derivatives of the objective function is unnecessary for the proposed CS. To evaluate its performance, the CS is tested against several unconstrained optimization problems. The results obtained are compared to those obtained by the popular search techniques, i.e., the genetic algorithm (GA), the particle swarm optimization (PSO), and the adaptive tabu search (ATS). As results, the CS outperforms other algorithms and provides superior results. The CS is also applied to a constrained design of the optimum PID controller for the dc motor speed control system. From experimental results, the CS has been successfully applied to the speed control of the dc motor.展开更多
A robust control algorithm is proposed to focus on the non-linearity and parameters' uncertainties of an electro-hydraulic proportional speed control system (EHPSCS) with a single-rod hydraulic actuator. The robust...A robust control algorithm is proposed to focus on the non-linearity and parameters' uncertainties of an electro-hydraulic proportional speed control system (EHPSCS) with a single-rod hydraulic actuator. The robust controller proposed does not need to design stable compensator in advance, is simple in design and has large scope of uncertainty applications. The feedback gains of the robust controller proposed are small, so it is easily implemented in engineering applications. Experimental research on the speed control under the different conditions is carried out for an EHPSCS. Experimental results show that the robust controller proposed has better robustness subject to parametric uncertainties, and adaptability of parameters' variation of control system itself and plant parameter variation.展开更多
The orthogonality between the subcarriers of multipleinput multiple-output orthogonal frequency division multiplexing( MIMO-OFDM) systems is destroyed due to the Doppler frequency offset,particularly in the high-speed...The orthogonality between the subcarriers of multipleinput multiple-output orthogonal frequency division multiplexing( MIMO-OFDM) systems is destroyed due to the Doppler frequency offset,particularly in the high-speed train( HST) environment,which leads to severe inter-carrier interference( ICI). Therefore,it is necessary to analyze the mechanism and influence factor of ICI in HST environment. In this paper, by using a non-stationary geometry-based stochastic model( GBSM) for MIMO HST channels, ICI is analyzed through investigating the channel coefficients and the carrier-to-interference power ratio( CIR). It is a fact that most of signal energy spreads on itself and its several neighborhood subcarriers. By investigating the amplitude of subcarriers, CIR is used to evaluate the ICI power level. The simulation results show that the biggest impact factor for the CIR is the multipath number L and the minimum impact factor K; when the train speed υR> 400 km / h,the normalized Doppler frequency offset ε > 0. 35,the CIR tends to zero,and the communication quality will be very poor at this condition. Finally,bit error rate( BER) is investigated by simulating a specific channel environment.展开更多
This paper deals with a multidimensional examination of the infrastructural, technical/technological, operational, economic, social, and environmental performances of high-speed rail (HSR) systems, including their o...This paper deals with a multidimensional examination of the infrastructural, technical/technological, operational, economic, social, and environmental performances of high-speed rail (HSR) systems, including their overview, analysis of some real-life cases, and limited (analytical) modeling. The infrastructural performances reflect design and geometrical characteristics of the HSR lines and stations. The technical/technological performances relate to the characteristics of rolling stock, i.e., high-speed trains, and supportive facilities and equipment, i.e., the power supply, signaling, and traffic control and management system(s). The operational performances include the capacity and productivity of HSR lines and rolling stock, and quality of services. The economic per- formances refer to the HSR systems' costs, revenues, and their relationship. The social performances relate to the impacts of HSR systems on the society such as congestion, noise, and safety, and their externalities, and the effects in terms of contribution to the local and global/country social- economic development. Finally, the environmental performances of the HSR systems reflect their energy consumption and related emissions of green house gases, land use, and corresponding externalities.展开更多
The high-speed railway integrated grounding system is the basic guarantee for the safe and stable operation of the railway. It is the world’s largest long-distance horizontally elongated joint grounding system, which...The high-speed railway integrated grounding system is the basic guarantee for the safe and stable operation of the railway. It is the world’s largest long-distance horizontally elongated joint grounding system, which stretches the length of hundreds to thousands of kilometers, and its structure is not only different from power station and substation grounding system, but also different from the transmission line tower, lightning rod and other small grounding devices. There is little research information on the grounding impedance of high-speed railway integrated grounding system. This paper adopted 0.618 compensation method and reverse away method respectively, measured a section of high-speed railway integrated grounding system grounding impedance by JD16 and CA6425. Measurement results are in good agreement using those two type instrument. By using 0.618 compensation method, the measurement result will be gradually converged at 0.3 Ω with the increasing of current electrode distance, which is the real grounding impedance of integrated grounding system. By using reverse away method, the maximum measurement result difference is less than 0.024 Ω with the lead of current electrode distance increasing. The measurement results will be rapidly converged 0.25 Ω. The results showed that the reverse away method is helpful to shorten the length of current electrode wiring. The measurement error will be small when the current electrode wiring is longer.展开更多
Wind is one kind of clean and free renewable energy sources. Wind speed plays a pivotal role in the wind power output. However, due to the random and unstable nature of the wind, accurate prediction of wind speed is a...Wind is one kind of clean and free renewable energy sources. Wind speed plays a pivotal role in the wind power output. However, due to the random and unstable nature of the wind, accurate prediction of wind speed is a particularly challenging task. This paper presents a novel neural fuzzy method for the hourly wind speed prediction. Firstly, a neural structure is proposed for the functional-type single-input-rule-modules(FSIRMs) connected fuzzy inference system(FIS) to combine the merits of both the FSIRMs connected FIS and the neural network. Then, in order to achieve both the smallest training errors and the smallest parameters, a least square method based parameter learning algorithm is presented for the proposed FSIRMs connected neural fuzzy system(FSIRMNFS). Further,the proposed FSIRMNFS and its parameter learning algorithm are applied to the hourly wind speed prediction. Experiments and comparisons are also made to show the effectiveness and advantages of the proposed approach. Experimental results verified that our study has presented an effective approach for the hourly wind speed prediction. The proposed approach can also be used for the prediction of wind direction, wind power and some other prediction applications in the research field of renewable energy.展开更多
The mathematical models of electro-hydraulic speed control system using series of pipesis presented. The principle of pipe effection on dynamics of the system is developed. Computersimulation and physical experiment a...The mathematical models of electro-hydraulic speed control system using series of pipesis presented. The principle of pipe effection on dynamics of the system is developed. Computersimulation and physical experiment are also carried out. The experimental results show that a rightchoosing of serial pipe for electro-hydraulic system enables the dynamic response of the system tobe improved effectively.展开更多
文摘In the paper a referral system to assist the medical experts in the screening/referral of diabetic retinopathy is suggested. The system has been developed by a sequential use of different existing mathematical techniques. These techniques involve speeded up robust features(SURF), K-means clustering and visual dictionaries(VD). Three databases are mixed to test the working of the system when the sources are dissimilar. When experiments were performed an area under the curve(AUC) of 0.9343 was attained. The results acquired from the system are promising.
基金supported by the National Key Research and Development Program of China(Grant 2016YFB1200602)the National Natural Science Foundation of China (Grants 11672306, 51490673)+2 种基金the Strategic Priority Research Program of the Chinese Academy of Sciences (Grant XDB22020101)the National Basic Research Program (973 Program) of China (Grant 2014CB046801)the State Key Laboratory of Hydraulic Engineering Simulation and Safety (Tianjin University)
文摘In this study, the intrinsic mechanism of aerodynamic effects on the motion stability of a high-speed maglev system was investigated. The concept of a critical speed for maglev vehicles considering the aerodynamic effect is proposed. The study was carried out based on a single magnetic suspension system, which is convenient for proposing relevant concepts and obtaining explicit expressions. This study shows that the motion stability of the suspension system is closely related to the vehicle speed when aerodynamic effects are considered. With increases of the vehicle speed, the stability behavior of the system changes. At a certain vehicle speed,the stability of the system reaches a critical state, followed by instability. The speed corresponding to the critical state is the critical speed. Analysis reveals that when the system reaches the critical state, it takes two forms, with two critical speeds, and thus two expressions for the critical speed are obtained. The conditions of the existence of the critical speed were determined, and the effects of the control parameters and the lift coefficient on the critical speed were analyzed by numerical analysis. The results show that the first critical speed appears when the aerodynamic force is upward,and the second critical speed appears when the aerodynamic force is downward. Moreover, both critical speeds decrease with the increase of the lift coefficient.
基金supported by the National Key Technology R&D Program (2009BAG12A03)Innovation Project of Chinese Academy of Sciences of China (KJCX2-EW-L02-1)
文摘Pantograph system of high-speed trains become significant source of aerodynamic noise when travelling speed exceeds 300 km/h. In this paper, a hybrid method of non-linear acoustic solver (NLAS) and Ffowcs Williams-Hawkings (FW-H) acoustic analogy is used to predict the aerodynamic noise of pantograph system in this speed range. When the simulation method is validated by a benchmark problem of flows around a cylinder of finite span, we calculate the near flow field and far acoustic field surrounding the pantograph system. And then, the frequency spectra and acoustic attenuation with distance are analyzed, showing that the pantograph system noise is a typical broadband one with most acoustic power restricted in the medium-high frequency range from 200 Hz to 5 kHz. The aerodynamic noise of pantograph systems radiates outwards in the form of spherical waves in the far field. Analysis of the overall sound pressure level (OASPL) at different speeds exhibits that the acoustic power grows approximately as the 4th power of train speed. The comparison of noise reduction effects for four types of pantograph covers demonstrates that only case 1 can lessen the total noise by about 3 dB as baffles on both sides can shield sound wave in the spanwise direction. The covers produce additional aerodynamic noise themselves in the other three cases and lead to the rise of OASPLs.
基金This project is supported by Natural Science Foundation of Xi'an JiaotongUniversity, China, (No.2003025).
文摘The dynamical behaviors of logistic map(May's model) and duffing equation are studied through fractal dimension of time series at different parameters. It is shown that the parameters of dynamical behaviors can be identified effectively by the curve of fractal dimension with parameter increments. For further verification, the relation between the fractional dimension of time series and rotational speed can be used to identify critical speed effectively by using this method to a plate Jeffoctt rotor system. The numerical and experimental result indicates that the identification of critical parameters is effective.
文摘This study addresses sustainable transportation in the Texas Urban Triangle at the regional scale. Its aim is to determine the most suitable corridor for new transport infrastructure by employing a spatial decision support system proposed in this project. The system is being tested through its application to a prototype corridor parallel to Interstate 35 between San Antonio and Austin. The basic research questions asked are spatial in nature, so accordingly the geographic information system is the primary method of data analysis. The overall modeling approach is devoted to answering the following questions: What are the considerations to support sustainable growth? What scale or type of infrastructure is necessary? And how to adequately model the transportation corridors to meet the demands and to sustain the living environment at the same time?
基金supported by the National Natural Science Foundation of China(No.51275429)
文摘A finite element vibration model of a multiple wheel-rail system which consists of four wheels, one rail, and a series of sleepers is established to address the problem of rail corrugation in high-speed tracks. In the model, the creep forces between the wheels and rail are considered to be saturated and equal to the normal contact forces times the friction coefficient. The oscillation of the rail is coupled with that of wheels in the action of the saturated creep forces. When the coupling is strong, self- excited oscillation of the wheel-rail system occurs. The self-excited vibration propensity of the model is analyzed using the complex eigenvalue method. Results show that there are strong propensities of unstable self-excited vibrations whose frequencies are less than 1,200 Hz under some conditions. Preventing wheels from slipping on rails is an effective method for suppressing rail corrugation in high-speed tracks.
文摘With the development of current electronic technology, numerous high-speed data acquisition systems provide a variety of potential benefits. This article describes a high-speed data acquisition system which consists of ECL logic and TTL logic devices, samples and stores data with a 1 GHz clock. This system is accomplished easily and works stably. A performance test of this system has been undertaken and the results show that the effective number of bits (ENOB) is more than 6.5 bits.
文摘In this paper the authors present an analysis and the implementation of microprocessor-baseddigital phase-locked loop speed control system for an induction motor which is actuated by aSPWM-GTR inverter.The system is controlled by a 16-bit single chip microprocessor.A new type of frequency and phase detector is presented in detail,An adaptive method isadopted in speed controller.A three mode control scheme is used.These techniques are very use-ful to the improvement of the dynamic behavior of digital AC motor drive system.Experimental results show that the system is of good stability,high precision and good dynam-ic performance.
文摘Pixel-parallel PE and SIMD architectures are widely used in high-speed image processing to enhance computing power. With fully exploiting the data level parallelism of low- and middle-level image processing, SIMD architecture is able to finish great amount of computation with much less instruction cycle thus satisfy the high-speed system requirement. The main computation parts in those SIMD image processing hardware is known as PE (processing element) and it is responsible for transferring, storing and processing the image data. This paper describes a high-speed vision system with superscalar PE to enhance system performance and its dedicated parallel computing language specifically devel-oped for this vision system. The vision system can achieve motion detection at more than 2000fps and face detection at more than 100 fps which overwhelms some general serial CPUs in the same applications.
文摘A new kind of dynamic neural network--diagonal recurrent neural network (DRNN) and its learning method and architecture are presented. A direct adaptive control scheme is also developed that is applied to a DC (Direct Current) speed control system with the ability to auto-tune PI (Proportion Integral) parameters based on combining DRNN with PI controller. The simulation results of DRNN show better control performances and potential practical use in comparison with PI controller.
基金supported by National Natural Science Foundation of China (Grant Nos. 51175032, U1134201)National Basic Research Program of China (973 Program, Grant No. 2011CD711104)
文摘The wheel-rail contact problems, such as the number, location and the track of contact patches, are very important for optimizing the spatial structure of the rails and lowering the vehicle-turnout system dynamics. However, the above problems are not well solved currently because of having the difficulties in how to determine the multi-contact, to preciously present the changeable profiles of the rails and to establish an accurate spatial turnout system dynamics model. Based on a high-speed vehicle-turnout coupled model in which the track is modeled as flexible with rails and sleepers represented by beams, the line tracing extreme point method is introduced to investigate the wheel-rail multiple contact conditions and the key sections of the blade rail, longer nose rail, shorter rail in the switch and nose rail area are discretized to represent the varying profiles of rails in the turnout. The dynamic interaction between the vehicle and turnout is simulated for cases of the vehicle divergently passing the turnout and the multi-point contact is obtained. The tracks of the contact patches on the top of the rails are presented and the wheel-rail impact forces are offered in comparison with the contact patches transference on the rails. The numerical simulation results indicate that the length of two-point contact occurrence of a worn wheel profile and rails is longer than that of the new wheel profile and rails; The two-point contact definitely occurs in the switch and crossing area. Generally, three-point contact doesn’t occur for the new rail profile, which is testified by the wheel-rails interpolation distance and the first order derivative function of the tracing line extreme points. The presented research is not only helpful to optimize the structure of the turnout, but also useful to lower the dynamics of the high speed vehicle-turnout system.
文摘This paper proposes the current search (CS) metaheuristics conceptualized from the electric current flowing through electric networks for optimization problems with continuous design variables. The CS algorithm possesses two powerful strategies, exploration and exploitation, for searching the global optimum. Based on the stochastic process, the derivatives of the objective function is unnecessary for the proposed CS. To evaluate its performance, the CS is tested against several unconstrained optimization problems. The results obtained are compared to those obtained by the popular search techniques, i.e., the genetic algorithm (GA), the particle swarm optimization (PSO), and the adaptive tabu search (ATS). As results, the CS outperforms other algorithms and provides superior results. The CS is also applied to a constrained design of the optimum PID controller for the dc motor speed control system. From experimental results, the CS has been successfully applied to the speed control of the dc motor.
基金This project is supported by Provincial Natural Science Foundation of Zhejiang(No.502088).
文摘A robust control algorithm is proposed to focus on the non-linearity and parameters' uncertainties of an electro-hydraulic proportional speed control system (EHPSCS) with a single-rod hydraulic actuator. The robust controller proposed does not need to design stable compensator in advance, is simple in design and has large scope of uncertainty applications. The feedback gains of the robust controller proposed are small, so it is easily implemented in engineering applications. Experimental research on the speed control under the different conditions is carried out for an EHPSCS. Experimental results show that the robust controller proposed has better robustness subject to parametric uncertainties, and adaptability of parameters' variation of control system itself and plant parameter variation.
基金National Natural Science Foundation of China(No.61271213)
文摘The orthogonality between the subcarriers of multipleinput multiple-output orthogonal frequency division multiplexing( MIMO-OFDM) systems is destroyed due to the Doppler frequency offset,particularly in the high-speed train( HST) environment,which leads to severe inter-carrier interference( ICI). Therefore,it is necessary to analyze the mechanism and influence factor of ICI in HST environment. In this paper, by using a non-stationary geometry-based stochastic model( GBSM) for MIMO HST channels, ICI is analyzed through investigating the channel coefficients and the carrier-to-interference power ratio( CIR). It is a fact that most of signal energy spreads on itself and its several neighborhood subcarriers. By investigating the amplitude of subcarriers, CIR is used to evaluate the ICI power level. The simulation results show that the biggest impact factor for the CIR is the multipath number L and the minimum impact factor K; when the train speed υR> 400 km / h,the normalized Doppler frequency offset ε > 0. 35,the CIR tends to zero,and the communication quality will be very poor at this condition. Finally,bit error rate( BER) is investigated by simulating a specific channel environment.
文摘This paper deals with a multidimensional examination of the infrastructural, technical/technological, operational, economic, social, and environmental performances of high-speed rail (HSR) systems, including their overview, analysis of some real-life cases, and limited (analytical) modeling. The infrastructural performances reflect design and geometrical characteristics of the HSR lines and stations. The technical/technological performances relate to the characteristics of rolling stock, i.e., high-speed trains, and supportive facilities and equipment, i.e., the power supply, signaling, and traffic control and management system(s). The operational performances include the capacity and productivity of HSR lines and rolling stock, and quality of services. The economic per- formances refer to the HSR systems' costs, revenues, and their relationship. The social performances relate to the impacts of HSR systems on the society such as congestion, noise, and safety, and their externalities, and the effects in terms of contribution to the local and global/country social- economic development. Finally, the environmental performances of the HSR systems reflect their energy consumption and related emissions of green house gases, land use, and corresponding externalities.
文摘The high-speed railway integrated grounding system is the basic guarantee for the safe and stable operation of the railway. It is the world’s largest long-distance horizontally elongated joint grounding system, which stretches the length of hundreds to thousands of kilometers, and its structure is not only different from power station and substation grounding system, but also different from the transmission line tower, lightning rod and other small grounding devices. There is little research information on the grounding impedance of high-speed railway integrated grounding system. This paper adopted 0.618 compensation method and reverse away method respectively, measured a section of high-speed railway integrated grounding system grounding impedance by JD16 and CA6425. Measurement results are in good agreement using those two type instrument. By using 0.618 compensation method, the measurement result will be gradually converged at 0.3 Ω with the increasing of current electrode distance, which is the real grounding impedance of integrated grounding system. By using reverse away method, the maximum measurement result difference is less than 0.024 Ω with the lead of current electrode distance increasing. The measurement results will be rapidly converged 0.25 Ω. The results showed that the reverse away method is helpful to shorten the length of current electrode wiring. The measurement error will be small when the current electrode wiring is longer.
基金supported by the National Natural Science Foundation of China(61473176,61402260,61573225)the Natural Science Foundation of Shandong Province for Outstanding Young Talents in Provincial Universities(ZR2015JL021,ZR2015JL003)the Open Program from the State Key Laboratory of Management and Control for Complex Systems(20140102)
文摘Wind is one kind of clean and free renewable energy sources. Wind speed plays a pivotal role in the wind power output. However, due to the random and unstable nature of the wind, accurate prediction of wind speed is a particularly challenging task. This paper presents a novel neural fuzzy method for the hourly wind speed prediction. Firstly, a neural structure is proposed for the functional-type single-input-rule-modules(FSIRMs) connected fuzzy inference system(FIS) to combine the merits of both the FSIRMs connected FIS and the neural network. Then, in order to achieve both the smallest training errors and the smallest parameters, a least square method based parameter learning algorithm is presented for the proposed FSIRMs connected neural fuzzy system(FSIRMNFS). Further,the proposed FSIRMNFS and its parameter learning algorithm are applied to the hourly wind speed prediction. Experiments and comparisons are also made to show the effectiveness and advantages of the proposed approach. Experimental results verified that our study has presented an effective approach for the hourly wind speed prediction. The proposed approach can also be used for the prediction of wind direction, wind power and some other prediction applications in the research field of renewable energy.
文摘The mathematical models of electro-hydraulic speed control system using series of pipesis presented. The principle of pipe effection on dynamics of the system is developed. Computersimulation and physical experiment are also carried out. The experimental results show that a rightchoosing of serial pipe for electro-hydraulic system enables the dynamic response of the system tobe improved effectively.