Increase in permeability of renewable energy sources(RESs)leads to the prominent problem of voltage stability in power system,so it is urgent to have a system strength evaluation method with both accuracy and practica...Increase in permeability of renewable energy sources(RESs)leads to the prominent problem of voltage stability in power system,so it is urgent to have a system strength evaluation method with both accuracy and practicability to control its access scale within a reasonable range.Therefore,a hybrid intelligence enhancement method is proposed by combining the advantages of mechanism method and data driven method.First,calculation of critical short circuit ratio(CSCR)is set as the direction of intelligent enhancement by taking the multiple renewable energy station short circuit ratio as the quantitative indicator.Then,the construction process of CSCR dataset is proposed,and a batch simulation program of samples is developed accordingly,which provides a data basis for subsequent research.Finally,a multi-task learning model based on progressive layered extraction is used to simultaneously predict CSCR of each RESs connection point,which significantly reduces evaluation error caused by weak links.Predictive performance and anti-noise performance of the proposed method are verified on the CEPRI-FS-102 bus system,which provides strong technical support for real-time monitoring of system strength.展开更多
Synchronous generators(SGs)are still making major contributions to the re-stabilization of a power system following voltage/frequency disturbances,attributed to their inherent capability of providing system strength a...Synchronous generators(SGs)are still making major contributions to the re-stabilization of a power system following voltage/frequency disturbances,attributed to their inherent capability of providing system strength and inertia.However,SGs powered by fossil fuels are operating to a lesser extent and scheduled for decommissioning in the National Electricity Market(NEM)of Australia due to the accelerating increase of low bidding priced asynchronous generation of wind and solar,which leads to the reduction and even in some cases,a shortage of system strength and inertia.This paper comprehensively reviews the requirements of system strength and inertia in the NEM from an operational security perspective.Australia is the first country that established the regulation rules of system strength and inertia to accommodate issues of an emerging high penetration level of non-synchronous renewable generation.展开更多
One experiment was conducted, through tensile tests of Albazzia and Eucalypt roots culled from the fields. The other experiment was conducted, by testing anti-drawing strength of these root systems in the Albazzia and...One experiment was conducted, through tensile tests of Albazzia and Eucalypt roots culled from the fields. The other experiment was conducted, by testing anti-drawing strength of these root systems in the Albazzia and Eucalypt lands. These two experiments had an aim to give insights into the maximum tensile strength and anti-drawing strength of the root systems. Results indicated that the maximum tensile strength of root system is in an exponential relation with the diameter of root system while the maximum tensile strength is positively correlative with the diameter of root system. Anti-drawing force of root system together with root diameter, length, and soil bulk density are folded into a regression equation in an attempt to figure out the static friction coefficient between root system and its ambient soil.展开更多
Coronary artery calcium data and reporting system(CAC-DRS)is a recently introduced standardized reporting system for calcium scoring on computed tomography.CAC-DRS provides four risk categories(0,1,2 and 3)along with ...Coronary artery calcium data and reporting system(CAC-DRS)is a recently introduced standardized reporting system for calcium scoring on computed tomography.CAC-DRS provides four risk categories(0,1,2 and 3)along with treatment recommendations for each category.As with any other new reporting platform,CAC-DRS has both advantages and disadvantages.Improved communication,better clarity of details,organized management recommendations and utility in future research and education are the major strengths of CAC-DRS.It has many limitations such as questionable need for a new system,few missing components,use of a less accurate visual method and treatment suggestions based on expert opinion instead of clinical trials.In this contemporary review,we discuss the new reporting system CAC-DRS,its application,strengths and limitations and conclude with some remarks for the future.展开更多
A novel flocking control approach is proposed for multi-agent systems by integrating the variables of velocities, motion directions, and positions of agents. A received signal strength indicator (RSSI) is applied as...A novel flocking control approach is proposed for multi-agent systems by integrating the variables of velocities, motion directions, and positions of agents. A received signal strength indicator (RSSI) is applied as a variable to estimate the inter-distance between agents. A key parameter that contains the local information of agents is defined, and a multi-variable controller is proposed based on the parameter. For the position control of agents, the RSSI is introduced to substitute the distance as a control variable in the systems. The advantages of RSSI include that the relative distance between every two agents can be adjusted through the communication quality under different environments, and it can shun the shortage of the limit of sensors. Simulation studies demonstrate the effectiveness of the proposed control approach.展开更多
It is known that structural stiffness and strength distributions have an important role in the seismic response of buildings. The effect of using different code-specified lateral load patterns on the seismic performan...It is known that structural stiffness and strength distributions have an important role in the seismic response of buildings. The effect of using different code-specified lateral load patterns on the seismic performance of fixed-base buildings has been investigated by researchers during the past two decades. However, no investigation has yet been carried out for the case of soil-structure systems. In the present study, through intensive parametric analyses of 21,600 linear and nonlinear MDOF systems and considering five different shear strength and stiffness distribution patterns, including three code-specified patterns as well as uniform and concentric patterns subjected to a group of earthquakes recorded on alluvium and soft soils, the effect of structural characteristics distribution on the strength demand and ductility reduction factor of MDOF fixed-base and soil-structure systems are parametrically investigated. The results of this study show that depending on the level of inelasticity, soil flexibility and number of degrees-of-freedoms (DOFs), structural characteristics distribution can significantly affect the strength demand and ductility reduction factor of MDOF systems. It is also found that at high levels of inelasticity, the ductility reduction factor of low-rise MDOF soil-structure systems could be significantly less than that of fixed-base structures and the reduction is less pronounced as the number of stories increases.展开更多
The most common method used to describe earthquake activity is based on the changes in physical parameters of the earth's surface such as displacement of active fault and seismic wave.However,such approach is not suc...The most common method used to describe earthquake activity is based on the changes in physical parameters of the earth's surface such as displacement of active fault and seismic wave.However,such approach is not successful in forecasting the movement behaviors of faults.In the present study,a new mechanical model of fault activity,considering the shear strength on the fault plane and the influence of the resistance force,is established based on the occurrence condition of earthquake.A remote real-time monitoring system is correspondingly developed to obtain the changes in mechanical components within fault.Taking into consideration the local geological conditions and the history of fault activity in Zhangjiakou of China,an active fault exposed in the region of Zhangjiakou is selected to be directly monitored by the real-time monitoring technique.A thorough investigation on local fault structures results in the selection of two suitable sites for monitoring potential active tectonic movements of Zhangjiakou fault.Two monitoring curves of shear strength,recorded during a monitoring period of 6 months,turn out to be steady,which indicates that the potential seismic activities hardly occur in the adjacent region in the near future.This monitoring technique can be used for early-warning prediction of the movement of active fault,and can help to further gain an insight into the interaction between fault activity and relevant mechanisms.展开更多
Discrete fracture network(DFN) models have been proved to be effective tools for the characterisation of rock masses by using statistical distributions to generate realistic three-dimensional(3 D) representations of a...Discrete fracture network(DFN) models have been proved to be effective tools for the characterisation of rock masses by using statistical distributions to generate realistic three-dimensional(3 D) representations of a natural fracture network. The quality of DFN modelling relies on the quality of the field data and their interpretation. In this context, advancements in remote data acquisition have now made it possible to acquire high-quality data potentially not accessible by conventional scanline and window mapping. This paper presents a comparison between aggregate and disaggregate approaches to define fracture sets, and their role with respect to the definition of key input parameters required to generate DFN models. The focal point of the discussion is the characterisation of in situ block size distribution(IBSD) using DFN methods. An application of IBSD is the assessment of rock mass quality through rock mass classification systems such as geological strength index(GSI). As DFN models are becoming an almost integral part of many geotechnical and mining engineering problems, the authors present a method whereby realistic representation of 3 D fracture networks and block size analysis are used to estimate GSI ratings, with emphasis on the limitations that exist in rock engineering design when assigning a unique GSI value to spatially variable rock masses.展开更多
Biomechanical characteristics of the root system of hornbeam (Carpinus betulus) were assessed by measuring Root Area Ratio (RAR) values and tensile strength of root specimens of eight hornbeam trees growing on hil...Biomechanical characteristics of the root system of hornbeam (Carpinus betulus) were assessed by measuring Root Area Ratio (RAR) values and tensile strength of root specimens of eight hornbeam trees growing on hilly terrain of Northern Iran. RAR values of the roots were obtained using profile trenching method at soil depth of the top 0.1 m. In total 123 root specimens were analyzed for tensile strength. Results indicate that in general, RAR decreases with depth, following a power function. The RAR values in up and down slopes have no significant statistical differences. In most cases, the maximum RAR values were located in soil depth of the top 0.1 m, with maximum rooting depth at about 0.75 m. The minimum and maximum RAR values along the profiles were 0.004% and 6.431% for down slope and 0.004% and 3.995% for up slope, respectively. The number of roots in the up and down slope trenches was not significantly different. In the same manner as for RAR, number of roots distributing with depth was satisfactorily approximated a power function. The penetration depths of above 90 percent of the roots were at soil depths of 50 cm and 60 cm for up and down slopes, respectively. Results of Spearman's bivariate correlation showed no significant correlation between the RAR value with tree diameter and gradient of slope and number of roots. The mean value of root tensile strength was 31.51 ± 1.05 MPa and root tensile strength decreased with the increase in root diameter, following a power law equation. Using ANCOVA, we found intraspecies variation of tensile strength.展开更多
Biomechanical characteristics of the root system of hornbeam(Carpinus betulus) were assessed by measuring Root Area Ratio(RAR) values and tensile strength of root specimens of eight hornbeam trees growing on hilly ter...Biomechanical characteristics of the root system of hornbeam(Carpinus betulus) were assessed by measuring Root Area Ratio(RAR) values and tensile strength of root specimens of eight hornbeam trees growing on hilly terrain of Northern Iran.RAR values of the roots were obtained using profile trenching method at soil depth of the top 0.1 m.In total 123 root specimens were analyzed for tensile strength.Results indicate that in general, RAR decreases with depth, following a power function.The RAR values in up and down slopes have no significant statistical differences.In most cases, the maximum RAR values were located in soil depth of the top 0.1 m, with maximum rooting depth at about 0.75 m.The minimum and maximum RAR values along the profiles were 0.004% and 6.431% for down slope and 0.004% and 3.995% for up slope, respectively.The number of roots in the up and down slope trenches was not significantly different.In the same manner as for RAR, number of roots distributing with depth was satisfactorily approximated a power function.The penetration depths of above 90 percent of the roots were at soil depths of 50 cm and 60 cm for up and down slopes, respectively.Results of Spearman's bivariate correlation showed no significant correlation between the RAR value with tree diameter and gradient of slope and number of roots.The mean value of root tensile strength was 31.51 ± 1.05 MPa and root tensile strength decreased with the increase in root diameter, follow-ing a power law equation.Using ANCOVA, we found intraspecies variation of tensile strength.展开更多
The incorporation of ZnO into Fe2O3-K2O system increases its activity, enhances its moisture stability and mechanical strength. The origin of the enhancement in activity and moisture stability is discussed in the lig...The incorporation of ZnO into Fe2O3-K2O system increases its activity, enhances its moisture stability and mechanical strength. The origin of the enhancement in activity and moisture stability is discussed in the light of experimental results obtained by BET, XRD, XPS. It was found that the addition of ZnO to Fe2O3-K2O system strengthens the interaction between Fe2O3 and K2O, reduces the formation temperature of KFe11O17 at least by 50 oC, and promotes the transformation of Fe3+ to Fe2+ further.展开更多
Tree spars,as appropriate supports for cable yarding systems,have to beverified for the strength before any real operation.This paper gives theoretical analysisfor various cases.Tree spars without guylines are normall...Tree spars,as appropriate supports for cable yarding systems,have to beverified for the strength before any real operation.This paper gives theoretical analysisfor various cases.Tree spars without guylines are normally under heavy bending stress,which dominates the strength design.For tree spars equipped with guylines,the spardeflection follows the same way as an unguyed spar.The overload of the bending stressremains the main reason of spar failures.Several diversities of tree spars from theidealized condition are investigated for the sake of better modeling of the real situation.Analysis supports that the tree spar can generally be treated as a straight cylindricalcolumn without giving significant errors.The load can be handled as centrically applied.Design methods are provided for both guyed and unguyed tree spars,which will benefit thepractice of using tree spars as an alternative for steel spars.展开更多
High durability and high tensile strength makes ultra-high performance concrete( UHPC) an ideal material for bridges,while its early shrinkage in the construction of cast-in-situ mass concrete leads structure crack-ea...High durability and high tensile strength makes ultra-high performance concrete( UHPC) an ideal material for bridges,while its early shrinkage in the construction of cast-in-situ mass concrete leads structure crack-easily,which restricts the application of UHPC in deck system. Whether reasonable amount of coarse aggregate can influence the strength of UHPC and improve the shrinkage performance or reduce the cost is still in doubt. Besides,in order to improve its constructability and workability, whether autoclaved curing system of UHPC can be changed remains to be further researched. In response to these circumstances, a systematic experimental study on the strength of UHPC mixed with coarse aggregate in different ratios has been presented in this paper. The three curing systems,namely standard curing,180-200 ℃/1. 1 MPa autoclaved curing,and hot water curing were tested to reveal the relationship between UHPC's properties and curing systems,and the UHPC ' s microstructure was also preliminarily studied by scanning electron microscope( SEM). The experimental research can draw the following conclusions. Under the condition of the same mix ratio, autoclaved curing guarantees the highest compressive strength,followed by hot water curing and standard curing. The compressive strength of concrete increases with the temperature in the range of 25 to 90 ℃ hot water curing,and high temperature in precuring period can speed up the strength development of UHPC,but the sequence of precuring period does not obviously affect the results. In 90 ℃ hot water and autoclaved curing,the strength is over 150 MPa,and it has little relation with gravel ratio. While the value increases first and then decreases in a lower temperature curing with the increasing of gravel amount,even only about 80 MPa at room temperature. The strength increases moderately along with the increase of the curing age by standard curing,especially in the initial stage.展开更多
The study endeavors to provide statistical inference for a (1 + 1) cascade system for exponential distribution under joint effect of stress-strength attenuation factors. Estimators of reliability function are obtained...The study endeavors to provide statistical inference for a (1 + 1) cascade system for exponential distribution under joint effect of stress-strength attenuation factors. Estimators of reliability function are obtained using Maximum Likelihood Estimator (MLE) and Uniformly Minimum Variance Unbiased Estimator (UMVUE) of the parameters. Asymptotic distribution of the parameters is also obtained. Comparison between estimators is made using data obtained through simulation experiment.展开更多
The design of large-scale machine system is a very complex problem.These design problems usually have a lot of design variables and constraints so that they are difficult to be solved rapidly and efficiently by using ...The design of large-scale machine system is a very complex problem.These design problems usually have a lot of design variables and constraints so that they are difficult to be solved rapidly and efficiently by using conventional methods.In this paper,a new multilevel design method oriented network environment is proposed,which maps the design problem of large-scale machine system into a hypergraph with degree of linking strength (DLS) between vertices.By decomposition of hypergraph,this method can divide the complex design problem into some small and simple subproblems that can be solved concurrently in a network.展开更多
The number of passenger cars equipped with a smart key system continues to increase due to the convenience of the system. A smart key system allows the driver to enter and start a car without using a mechanical key th...The number of passenger cars equipped with a smart key system continues to increase due to the convenience of the system. A smart key system allows the driver to enter and start a car without using a mechanical key through a wireless authentication process between the car and the key fob. Even though a smart key system has its own security scheme, it is vulnerable to the so-called relay attacks. In a relay attack, attackers with signal relaying devices enter and start a car by relaying signals from the car to the owner’s fob. In this study, a method to detect a relay attack is proposed. The signal strength is used to determine whether the signal received is from the fob or the attacker’s relaying devices. Our results show that relay attacks can be avoided by using the proposed method.展开更多
文摘Increase in permeability of renewable energy sources(RESs)leads to the prominent problem of voltage stability in power system,so it is urgent to have a system strength evaluation method with both accuracy and practicability to control its access scale within a reasonable range.Therefore,a hybrid intelligence enhancement method is proposed by combining the advantages of mechanism method and data driven method.First,calculation of critical short circuit ratio(CSCR)is set as the direction of intelligent enhancement by taking the multiple renewable energy station short circuit ratio as the quantitative indicator.Then,the construction process of CSCR dataset is proposed,and a batch simulation program of samples is developed accordingly,which provides a data basis for subsequent research.Finally,a multi-task learning model based on progressive layered extraction is used to simultaneously predict CSCR of each RESs connection point,which significantly reduces evaluation error caused by weak links.Predictive performance and anti-noise performance of the proposed method are verified on the CEPRI-FS-102 bus system,which provides strong technical support for real-time monitoring of system strength.
文摘Synchronous generators(SGs)are still making major contributions to the re-stabilization of a power system following voltage/frequency disturbances,attributed to their inherent capability of providing system strength and inertia.However,SGs powered by fossil fuels are operating to a lesser extent and scheduled for decommissioning in the National Electricity Market(NEM)of Australia due to the accelerating increase of low bidding priced asynchronous generation of wind and solar,which leads to the reduction and even in some cases,a shortage of system strength and inertia.This paper comprehensively reviews the requirements of system strength and inertia in the NEM from an operational security perspective.Australia is the first country that established the regulation rules of system strength and inertia to accommodate issues of an emerging high penetration level of non-synchronous renewable generation.
文摘One experiment was conducted, through tensile tests of Albazzia and Eucalypt roots culled from the fields. The other experiment was conducted, by testing anti-drawing strength of these root systems in the Albazzia and Eucalypt lands. These two experiments had an aim to give insights into the maximum tensile strength and anti-drawing strength of the root systems. Results indicated that the maximum tensile strength of root system is in an exponential relation with the diameter of root system while the maximum tensile strength is positively correlative with the diameter of root system. Anti-drawing force of root system together with root diameter, length, and soil bulk density are folded into a regression equation in an attempt to figure out the static friction coefficient between root system and its ambient soil.
文摘Coronary artery calcium data and reporting system(CAC-DRS)is a recently introduced standardized reporting system for calcium scoring on computed tomography.CAC-DRS provides four risk categories(0,1,2 and 3)along with treatment recommendations for each category.As with any other new reporting platform,CAC-DRS has both advantages and disadvantages.Improved communication,better clarity of details,organized management recommendations and utility in future research and education are the major strengths of CAC-DRS.It has many limitations such as questionable need for a new system,few missing components,use of a less accurate visual method and treatment suggestions based on expert opinion instead of clinical trials.In this contemporary review,we discuss the new reporting system CAC-DRS,its application,strengths and limitations and conclude with some remarks for the future.
基金supported by the National Basic Research Program of China (973Program) under Grant No. 2010CB731800the National Natural Science Foundation of China under Grant No. 60934003 and 61074065the Key Project for Natural Science Research of Hebei Education Departmentunder Grant No. ZD200908
文摘A novel flocking control approach is proposed for multi-agent systems by integrating the variables of velocities, motion directions, and positions of agents. A received signal strength indicator (RSSI) is applied as a variable to estimate the inter-distance between agents. A key parameter that contains the local information of agents is defined, and a multi-variable controller is proposed based on the parameter. For the position control of agents, the RSSI is introduced to substitute the distance as a control variable in the systems. The advantages of RSSI include that the relative distance between every two agents can be adjusted through the communication quality under different environments, and it can shun the shortage of the limit of sensors. Simulation studies demonstrate the effectiveness of the proposed control approach.
文摘It is known that structural stiffness and strength distributions have an important role in the seismic response of buildings. The effect of using different code-specified lateral load patterns on the seismic performance of fixed-base buildings has been investigated by researchers during the past two decades. However, no investigation has yet been carried out for the case of soil-structure systems. In the present study, through intensive parametric analyses of 21,600 linear and nonlinear MDOF systems and considering five different shear strength and stiffness distribution patterns, including three code-specified patterns as well as uniform and concentric patterns subjected to a group of earthquakes recorded on alluvium and soft soils, the effect of structural characteristics distribution on the strength demand and ductility reduction factor of MDOF fixed-base and soil-structure systems are parametrically investigated. The results of this study show that depending on the level of inelasticity, soil flexibility and number of degrees-of-freedoms (DOFs), structural characteristics distribution can significantly affect the strength demand and ductility reduction factor of MDOF systems. It is also found that at high levels of inelasticity, the ductility reduction factor of low-rise MDOF soil-structure systems could be significantly less than that of fixed-base structures and the reduction is less pronounced as the number of stories increases.
文摘The most common method used to describe earthquake activity is based on the changes in physical parameters of the earth's surface such as displacement of active fault and seismic wave.However,such approach is not successful in forecasting the movement behaviors of faults.In the present study,a new mechanical model of fault activity,considering the shear strength on the fault plane and the influence of the resistance force,is established based on the occurrence condition of earthquake.A remote real-time monitoring system is correspondingly developed to obtain the changes in mechanical components within fault.Taking into consideration the local geological conditions and the history of fault activity in Zhangjiakou of China,an active fault exposed in the region of Zhangjiakou is selected to be directly monitored by the real-time monitoring technique.A thorough investigation on local fault structures results in the selection of two suitable sites for monitoring potential active tectonic movements of Zhangjiakou fault.Two monitoring curves of shear strength,recorded during a monitoring period of 6 months,turn out to be steady,which indicates that the potential seismic activities hardly occur in the adjacent region in the near future.This monitoring technique can be used for early-warning prediction of the movement of active fault,and can help to further gain an insight into the interaction between fault activity and relevant mechanisms.
基金NSERC (Natural Sciences and Engineering Research Council of Canada) for the financial support provided to this research through a Collaborative Research Development grant (Grant No. 11R74149 Mine-to-Mill Integration for Block Cave Mines)
文摘Discrete fracture network(DFN) models have been proved to be effective tools for the characterisation of rock masses by using statistical distributions to generate realistic three-dimensional(3 D) representations of a natural fracture network. The quality of DFN modelling relies on the quality of the field data and their interpretation. In this context, advancements in remote data acquisition have now made it possible to acquire high-quality data potentially not accessible by conventional scanline and window mapping. This paper presents a comparison between aggregate and disaggregate approaches to define fracture sets, and their role with respect to the definition of key input parameters required to generate DFN models. The focal point of the discussion is the characterisation of in situ block size distribution(IBSD) using DFN methods. An application of IBSD is the assessment of rock mass quality through rock mass classification systems such as geological strength index(GSI). As DFN models are becoming an almost integral part of many geotechnical and mining engineering problems, the authors present a method whereby realistic representation of 3 D fracture networks and block size analysis are used to estimate GSI ratings, with emphasis on the limitations that exist in rock engineering design when assigning a unique GSI value to spatially variable rock masses.
文摘Biomechanical characteristics of the root system of hornbeam (Carpinus betulus) were assessed by measuring Root Area Ratio (RAR) values and tensile strength of root specimens of eight hornbeam trees growing on hilly terrain of Northern Iran. RAR values of the roots were obtained using profile trenching method at soil depth of the top 0.1 m. In total 123 root specimens were analyzed for tensile strength. Results indicate that in general, RAR decreases with depth, following a power function. The RAR values in up and down slopes have no significant statistical differences. In most cases, the maximum RAR values were located in soil depth of the top 0.1 m, with maximum rooting depth at about 0.75 m. The minimum and maximum RAR values along the profiles were 0.004% and 6.431% for down slope and 0.004% and 3.995% for up slope, respectively. The number of roots in the up and down slope trenches was not significantly different. In the same manner as for RAR, number of roots distributing with depth was satisfactorily approximated a power function. The penetration depths of above 90 percent of the roots were at soil depths of 50 cm and 60 cm for up and down slopes, respectively. Results of Spearman's bivariate correlation showed no significant correlation between the RAR value with tree diameter and gradient of slope and number of roots. The mean value of root tensile strength was 31.51 ± 1.05 MPa and root tensile strength decreased with the increase in root diameter, following a power law equation. Using ANCOVA, we found intraspecies variation of tensile strength.
文摘Biomechanical characteristics of the root system of hornbeam(Carpinus betulus) were assessed by measuring Root Area Ratio(RAR) values and tensile strength of root specimens of eight hornbeam trees growing on hilly terrain of Northern Iran.RAR values of the roots were obtained using profile trenching method at soil depth of the top 0.1 m.In total 123 root specimens were analyzed for tensile strength.Results indicate that in general, RAR decreases with depth, following a power function.The RAR values in up and down slopes have no significant statistical differences.In most cases, the maximum RAR values were located in soil depth of the top 0.1 m, with maximum rooting depth at about 0.75 m.The minimum and maximum RAR values along the profiles were 0.004% and 6.431% for down slope and 0.004% and 3.995% for up slope, respectively.The number of roots in the up and down slope trenches was not significantly different.In the same manner as for RAR, number of roots distributing with depth was satisfactorily approximated a power function.The penetration depths of above 90 percent of the roots were at soil depths of 50 cm and 60 cm for up and down slopes, respectively.Results of Spearman's bivariate correlation showed no significant correlation between the RAR value with tree diameter and gradient of slope and number of roots.The mean value of root tensile strength was 31.51 ± 1.05 MPa and root tensile strength decreased with the increase in root diameter, follow-ing a power law equation.Using ANCOVA, we found intraspecies variation of tensile strength.
文摘The incorporation of ZnO into Fe2O3-K2O system increases its activity, enhances its moisture stability and mechanical strength. The origin of the enhancement in activity and moisture stability is discussed in the light of experimental results obtained by BET, XRD, XPS. It was found that the addition of ZnO to Fe2O3-K2O system strengthens the interaction between Fe2O3 and K2O, reduces the formation temperature of KFe11O17 at least by 50 oC, and promotes the transformation of Fe3+ to Fe2+ further.
文摘Tree spars,as appropriate supports for cable yarding systems,have to beverified for the strength before any real operation.This paper gives theoretical analysisfor various cases.Tree spars without guylines are normally under heavy bending stress,which dominates the strength design.For tree spars equipped with guylines,the spardeflection follows the same way as an unguyed spar.The overload of the bending stressremains the main reason of spar failures.Several diversities of tree spars from theidealized condition are investigated for the sake of better modeling of the real situation.Analysis supports that the tree spar can generally be treated as a straight cylindricalcolumn without giving significant errors.The load can be handled as centrically applied.Design methods are provided for both guyed and unguyed tree spars,which will benefit thepractice of using tree spars as an alternative for steel spars.
基金National Natural Science Foundations of China(Nos.51478120,U1305245)
文摘High durability and high tensile strength makes ultra-high performance concrete( UHPC) an ideal material for bridges,while its early shrinkage in the construction of cast-in-situ mass concrete leads structure crack-easily,which restricts the application of UHPC in deck system. Whether reasonable amount of coarse aggregate can influence the strength of UHPC and improve the shrinkage performance or reduce the cost is still in doubt. Besides,in order to improve its constructability and workability, whether autoclaved curing system of UHPC can be changed remains to be further researched. In response to these circumstances, a systematic experimental study on the strength of UHPC mixed with coarse aggregate in different ratios has been presented in this paper. The three curing systems,namely standard curing,180-200 ℃/1. 1 MPa autoclaved curing,and hot water curing were tested to reveal the relationship between UHPC's properties and curing systems,and the UHPC ' s microstructure was also preliminarily studied by scanning electron microscope( SEM). The experimental research can draw the following conclusions. Under the condition of the same mix ratio, autoclaved curing guarantees the highest compressive strength,followed by hot water curing and standard curing. The compressive strength of concrete increases with the temperature in the range of 25 to 90 ℃ hot water curing,and high temperature in precuring period can speed up the strength development of UHPC,but the sequence of precuring period does not obviously affect the results. In 90 ℃ hot water and autoclaved curing,the strength is over 150 MPa,and it has little relation with gravel ratio. While the value increases first and then decreases in a lower temperature curing with the increasing of gravel amount,even only about 80 MPa at room temperature. The strength increases moderately along with the increase of the curing age by standard curing,especially in the initial stage.
文摘The study endeavors to provide statistical inference for a (1 + 1) cascade system for exponential distribution under joint effect of stress-strength attenuation factors. Estimators of reliability function are obtained using Maximum Likelihood Estimator (MLE) and Uniformly Minimum Variance Unbiased Estimator (UMVUE) of the parameters. Asymptotic distribution of the parameters is also obtained. Comparison between estimators is made using data obtained through simulation experiment.
文摘The design of large-scale machine system is a very complex problem.These design problems usually have a lot of design variables and constraints so that they are difficult to be solved rapidly and efficiently by using conventional methods.In this paper,a new multilevel design method oriented network environment is proposed,which maps the design problem of large-scale machine system into a hypergraph with degree of linking strength (DLS) between vertices.By decomposition of hypergraph,this method can divide the complex design problem into some small and simple subproblems that can be solved concurrently in a network.
文摘The number of passenger cars equipped with a smart key system continues to increase due to the convenience of the system. A smart key system allows the driver to enter and start a car without using a mechanical key through a wireless authentication process between the car and the key fob. Even though a smart key system has its own security scheme, it is vulnerable to the so-called relay attacks. In a relay attack, attackers with signal relaying devices enter and start a car by relaying signals from the car to the owner’s fob. In this study, a method to detect a relay attack is proposed. The signal strength is used to determine whether the signal received is from the fob or the attacker’s relaying devices. Our results show that relay attacks can be avoided by using the proposed method.