Background:High blood pressure(BP)is a major contributor to mortality and cardiovascular diseases.Despite the known benefits of exercise for reducing BP,it is crucial to identify the most effective physical activity(P...Background:High blood pressure(BP)is a major contributor to mortality and cardiovascular diseases.Despite the known benefits of exercise for reducing BP,it is crucial to identify the most effective physical activity(PA)intervention.This systematic review and network meta-analysis(NMA)aimed to evaluate the available evidence on the effectiveness of various PA interventions for reducing BP and to determine their hierarchy based on their impact on BP.Methods:A search of PubMed,SPORTDiscus,PsycINFO,Web of Science,CINAHL,Cochrane,and Eric databases was conducted up to December 2022 for this systematic review and NMA.Randomized controlled trials and quasi-experimental studies targeting healthy children and adolescents aged 6-12 years old were included in this study.Only studies that compared controlled and intervention groups using PA or exercise as the major influence were included.We followed the Preferred Reporting Items for Systematic Reviews and Meta-Analyses(PRISMA)guidelines.Three independent investigators performed the literature screening,data extraction,and risk of bias assessment.We used Bayesian arm-based NMA to synthesize the data.The primary outcomes were systolic BP and diastolic BP.We calculated the mean differences(MDs)in systolic BP and diastolic BP before and after treatment.Mean treatment differences were estimated using NMA and random-effect models.Results:We synthesized 27 studies involving 15,220 children and adolescents.PA combined with nutrition and behavior change was the most effective intervention for reducing both systolic BP and diastolic BP(MD=-8.64,95%credible interval(95%CI):-11.44 to-5.84;MD=-6.75,95%CI:-10.44 to-3.11),followed by interventions with multiple components(MD=-1.39,95%CI:-1.94 to-0.84;MD=-2.54,95%CI:-4.89 to-0.29).Conclusion:Our findings suggest that PA interventions incorporating nutrition and behavior change,followed by interventions with multiple components,are most effective for reducing both systolic BP and diastolic BP in children and adolescents.展开更多
Context/objectives: The fight against Chronic Non-Communicable Diseases (NCDs) is a long-term undertaking, which requires available, motivated and well-managed human resources (HR). The administrative management of sk...Context/objectives: The fight against Chronic Non-Communicable Diseases (NCDs) is a long-term undertaking, which requires available, motivated and well-managed human resources (HR). The administrative management of skills on both qualitative and quantitative levels is one of the essential functions of a health system. To better implement policies of fight against High Blood Pressure (HBP) and other chronic diseases, it is important to establish strategies to retain health personnel. This loyalty requires favorable working conditions and consideration of the contribution-reward couple. Good working conditions are likely to reduce the phenomenon of medical nomadism;conversely, poor HR management can contribute to their exodus towards exotic “green pastures”, thus leading to an additional crisis in the Cameroonian health system. The fight against HBP is a complex, multifaceted and multifactorial reality that requires appropriate management model for all types of resources mainly HR. The main objective of this research is to show the impact of poor management of human resources in Cameroon health system on medical nomadism and the ineffectiveness of the fight against High Blood Pressure. Method: A cross-sectional descriptive survey among five hundred (500) health facilities in the center region of Cameroon has been conducted. A stratified probabilistic technique has been used, and the number of health facilities to be surveyed has been determined using the “sample size estimation table” of Depelteau. The physical questionnaires have been printed and then distributed to data collectors. After data collection, the latter were grouped during processing in Excel sheets. The Chi-square test was used for data with a qualitative value and that of Kolmogorov-Sminorf for data with a quantitative value to assess the normality and reliability of data. The Crochach’s Alpha reliability test allowed us to have a summary of the means and variances and then to search for intragroup correlations between variables. Descriptive analysis was possible with the XLSTAT 2016 software. Results: 43.60% of Health Facilities (HF) managers were unqualified. 82.20% of HF managers have staff in a situation of professional insecurity. They are mainly contractual (49.00), decision-making agents (24.40%), casual agents (08.80). The proportion of unstable personnel is average of 22.00% and very unstable, 12.00%.展开更多
Accurate prediction of the frictional pressure drop is important for the design and operation of subsea oil and gas transporting system considering the length of the pipeline. The applicability of the correlations to ...Accurate prediction of the frictional pressure drop is important for the design and operation of subsea oil and gas transporting system considering the length of the pipeline. The applicability of the correlations to pipeline-riser flow needs evaluation since the flow condition in pipeline-riser is quite different from the original data where they were derived from. In the present study, a comprehensive evaluation of 24prevailing correlation in predicting frictional pressure drop is carried out based on experimentally measured data of air-water and air-oil two-phase flows in pipeline-riser. Experiments are performed in a system having different configuration of pipeline-riser with the inclination of the downcomer varied from-2°to-5°to investigated the effect of the elbow on the frictional pressure drop in the riser. The inlet gas velocity ranges from 0.03 to 6.2 m/s, and liquid velocity varies from 0.02 to 1.3 m/s. A total of885 experimental data points including 782 on air-water flows and 103 on air-oil flows are obtained and used to access the prediction ability of the correlations. Comparison of the predicted results with the measured data indicate that a majority of the investigated correlations under-predict the pressure drop on severe slugging. The result of this study highlights the requirement of new method considering the effect of pipe layout on the frictional pressure drop.展开更多
High-precision and real-time diagnosis of sucker rod pumping system(SRPS)is important for quickly mastering oil well operations.Deep learning-based method for classifying the dynamometer card(DC)of oil wells is an eff...High-precision and real-time diagnosis of sucker rod pumping system(SRPS)is important for quickly mastering oil well operations.Deep learning-based method for classifying the dynamometer card(DC)of oil wells is an efficient diagnosis method.However,the input of the DC as a two-dimensional image into the deep learning framework suffers from low feature utilization and high computational effort.Additionally,different SRPSs in an oil field have various system parameters,and the same SRPS generates different DCs at different moments.Thus,there is heterogeneity in field data,which can dramatically impair the diagnostic accuracy.To solve the above problems,a working condition recognition method based on 4-segment time-frequency signature matrix(4S-TFSM)and deep learning is presented in this paper.First,the 4-segment time-frequency signature(4S-TFS)method that can reduce the computing power requirements is proposed for feature extraction of DC data.Subsequently,the 4S-TFSM is constructed by relative normalization and matrix calculation to synthesize the features of multiple data and solve the problem of data heterogeneity.Finally,a convolutional neural network(CNN),one of the deep learning frameworks,is used to determine the functioning conditions based on the 4S-TFSM.Experiments on field data verify that the proposed diagnostic method based on 4S-TFSM and CNN(4S-TFSM-CNN)can significantly improve the accuracy of working condition recognition with lower computational cost.To the best of our knowledge,this is the first work to discuss the effect of data heterogeneity on the working condition recognition performance of SRPS.展开更多
Birds,a fascinating and diverse group occupying various habitats worldwide,exhibit a wide range of life-history traits,reproductive methods,and migratory behaviors,all of which influence their immune systems.The assoc...Birds,a fascinating and diverse group occupying various habitats worldwide,exhibit a wide range of life-history traits,reproductive methods,and migratory behaviors,all of which influence their immune systems.The association between major histocompatibility complex(MHC)genes and certain ecological factors in response to pathogen selection has been extensively studied;however,the role of the co-working molecule T cell receptor(TCR)remains poorly understood.This study aimed to analyze the copy numbers of TCR-V genes,the selection pressure(ωvalue)on MHC genes using available genomic data,and their potential ecological correlates across 93 species from 13 orders.The study was conducted using the publicly available genome data of birds.Our findings suggested that phylogeny influences the variability in TCR-V gene copy numbers and MHC selection pressure.The phylogenetic generalized least squares regression model revealed that TCR-Vαδcopy number and MHC-I selection pressure were positively associated with body mass.Clutch size was correlated with MHC selection pressure,and Migration was correlated with TCR-Vβcopy number.Further analyses revealed that the TCR-Vβcopy number was positively correlated with MHC-IIB selection pressure,while the TCR-Vγcopy number was negatively correlated with MHC-I peptide-binding region selection pressure.Our findings suggest that TCR-V diversity is significant in adaptive evolution and is related to species’life-history strategies and immunological defenses and provide valuable insights into the mechanisms underlying TCR-V gene duplication and MHC selection in avian species.展开更多
Nuclear power plants exhibit non-linear and time-variable dynamics.Therefore,designing a control system that sets the reactor power and forces it to follow the desired load is complicated.A supercritical water reactor...Nuclear power plants exhibit non-linear and time-variable dynamics.Therefore,designing a control system that sets the reactor power and forces it to follow the desired load is complicated.A supercritical water reactor(SCWR)is a fourth-generation conceptual reactor.In an SCWR,the non-linear dynamics of the reactor require a controller capable of control-ling the nonlinearities.In this study,a pressure-tube-type SCWR was controlled during reactor power maneuvering with a higher order sliding mode,and the reactor outgoing steam temperature and pressure were controlled simultaneously.In an SCWR,the temperature,pressure,and power must be maintained at a setpoint(desired value)during power maneuvering.Reactor point kinetics equations with three groups of delayed neutrons were used in the simulation.Higher-order and classic sliding mode controllers were separately manufactured to control the plant and were compared with the PI controllers speci-fied in previous studies.The controlled parameters were reactor power,steam temperature,and pressure.Notably,for these parameters,the PI controller had certain instabilities in the presence of disturbances.The classic sliding mode controller had a higher accuracy and stability;however its main drawback was the chattering phenomenon.HOSMC was highly accurate and stable and had a small computational cost.In reality,it followed the desired values without oscillations and chattering.展开更多
The high turbulence of unstable combustion in the working process of liquid rocket engine will cause periodic pressure pulsation.Therefore,a pressure pulsation device that is easy to reuse,broadband,suited for poisono...The high turbulence of unstable combustion in the working process of liquid rocket engine will cause periodic pressure pulsation.Therefore,a pressure pulsation device that is easy to reuse,broadband,suited for poisonous media,and high pressure is designed and produced.Numerical and experimental studies show that the pulsator produces stable pressure waveforms at different flow rates,pressures,and frequencies,while the pressure waveform amplitude at the excitation frequency is larger.The pressure waveform amplitude increases exponentially with the flow rate and with smaller gaps and linear pressure increasing.The pressure waveform amplitude varies greatly at different frequencies along the pipeline.As the frequency increases,the pressure waveform amplitude of the excitation increases first and then decreases.The pressure waveform amplitude at low frequencies changes little along the pipeline.The pressure waveform amplitude at medium frequencies readily couples to the pipeline flow field and increases its value.The pressure waveform amplitude at high frequencies attenuates along the pipeline,where attenuation increases with frequency.The ability of the pulsator to provide stable excitation and high pressure is verified through normal and high pressure testsindifferentpipelinesystems.展开更多
One of the effective options for energy saving in terms of heat costs for the formation of routine thermal conditions of working areas of large-sized industrial premises is the replacement of traditional convective(wa...One of the effective options for energy saving in terms of heat costs for the formation of routine thermal conditions of working areas of large-sized industrial premises is the replacement of traditional convective(water)heating systems with systems,the main part of which are gas infrared emitters.But the mass introduction of such systems based on emitters was held back until recently by the lack of scientific and technical foundations for ensuring not only the routine thermal conditions of local working areas,but also ensuring acceptable concentrations of carbon dioxide,which is formed during the operation of a gas emitter.Solving the latter problem by the method of experimental selection of heating and air exchange modes is practically impossible due to the multivariate nature of possible solutions to this problem.Therefore,the purpose of the work is to analyze the results of theoretical studies of the possibility of ensuring an acceptable level of carbon dioxide concentrations in local working areas during the operation of gas infrared emitters and an air exchange system.Numerical modeling of heat and mass transfer processes under such conditions was performed in a fairly wide range of the main significant factors:air flow rate in the air exchange system from 0.01 to 0.04 kg/s,the position of the air inlet and outlet channels relative to the radiator and the local workplace(height from 0.3 to 4.1 m).It was found that by varying the numerical values of these factors,it is possible to ensure carbon dioxide concentrations in the local working area within the permissible limits of up to 1400 ppm.展开更多
Sinter is the core raw material for blast furnaces.Flue pressure,which is an important state parameter,affects sinter quality.In this paper,flue pressure prediction and optimization were studied based on the shapley a...Sinter is the core raw material for blast furnaces.Flue pressure,which is an important state parameter,affects sinter quality.In this paper,flue pressure prediction and optimization were studied based on the shapley additive explanation(SHAP)to predict the flue pressure and take targeted adjustment measures.First,the sintering process data were collected and processed.A flue pressure prediction model was then constructed after comparing different feature selection methods and model algorithms using SHAP+extremely random-ized trees(ET).The prediction accuracy of the model within the error range of±0.25 kPa was 92.63%.SHAP analysis was employed to improve the interpretability of the prediction model.The effects of various sintering operation parameters on flue pressure,the relation-ship between the numerical range of key operation parameters and flue pressure,the effect of operation parameter combinations on flue pressure,and the prediction process of the flue pressure prediction model on a single sample were analyzed.A flue pressure optimization module was also constructed and analyzed when the prediction satisfied the judgment conditions.The operating parameter combination was then pushed.The flue pressure was increased by 5.87%during the verification process,achieving a good optimization effect.展开更多
The rising flexible and intelligent electronics greatly facilitate the noninvasive and timely tracking of physiological information in telemedicine healthcare.Meticulously building bionic-sensitive moieties is vital f...The rising flexible and intelligent electronics greatly facilitate the noninvasive and timely tracking of physiological information in telemedicine healthcare.Meticulously building bionic-sensitive moieties is vital for designing efficient electronic skin with advanced cognitive functionalities to pluralistically capture external stimuli.However,realistic mimesis,both in the skin’s three-dimensional interlocked hierarchical structures and synchronous encoding multistimuli information capacities,remains a challenging yet vital need for simplifying the design of flexible logic circuits.Herein,we construct an artificial epidermal device by in situ growing Cu_(3)(HHTP)_(2) particles onto the hollow spherical Ti_(3)C_(2)T_(x) surface,aiming to concurrently emulate the spinous and granular layers of the skin’s epidermis.The bionic Ti_(3)C_(2)T_(x)@Cu_(3)(HHTP)_(2) exhibits independent NO_(2) and pressure response,as well as novel functionalities such as acoustic signature perception and Morse code-encrypted message communication.Ultimately,a wearable alarming system with a mobile application terminal is self-developed by integrating the bimodular senor into flexible printed circuits.This system can assess risk factors related with asthmatic,such as stimulation of external NO_(2) gas,abnormal expiratory behavior and exertion degrees of fingers,achieving a recognition accuracy of 97.6%as assisted by a machine learning algorithm.Our work provides a feasible routine to develop intelligent multifunctional healthcare equipment for burgeoning transformative telemedicine diagnosis.展开更多
High-temperature experiments were carried out for the slag systems of“FeO”−SiO_(2)−CaO−Al_(2)O_(3)and“FeO”−SiO_(2)−CaO−MgO at 1200℃and p(O_(2))of 10^(−7)kPa.The equilibrated samples were quenched,and the phase co...High-temperature experiments were carried out for the slag systems of“FeO”−SiO_(2)−CaO−Al_(2)O_(3)and“FeO”−SiO_(2)−CaO−MgO at 1200℃and p(O_(2))of 10^(−7)kPa.The equilibrated samples were quenched,and the phase compositions were measured by electron probe microanalysis(EPMA).A series of pseudo-ternary and pseudo-binary phase diagrams are constructed to demonstrate their applications in copper smelting process and evaluation of the thermodynamic database.Spinel and tridymite are identified to be the major primary phases in the composition range related to the copper smelting slags.It is found that the operating window of the smelting slag is primarily determined by w_(Fe)/w_(SiO_(2))ratio in the slag.Both MgO and Al_(2)O_(3)in the slag reduce the operating window which requires extra fluxing agent to keep the slag to be fully liquid.Complex spinel solid solutions cause inaccurate predictions of the current thermodynamic database.展开更多
To analyze the thermodynamic characteristics of leaching process of converter slag, φ-pH diagram of V-Ti-H2O system at oxygen partial pressure of 0.5 MPa, ionic mass concentration of 0.1 mol/kg and temperatures rangi...To analyze the thermodynamic characteristics of leaching process of converter slag, φ-pH diagram of V-Ti-H2O system at oxygen partial pressure of 0.5 MPa, ionic mass concentration of 0.1 mol/kg and temperatures ranging from 60 to 200 ℃ was obtained by recently published critically assessed standard Gibbs energies and activity coefficients of various species. When pH2, stable regions of V3+, VO2+ and VO2+ exist in the stable region of TiO2. The pH values of stable regions of vanadium and titanium decrease and redox potentials become more positive with the temperature increasing. Vanadium and titanium could be separated by one-step leaching based on thermodynamics. The experiment results of pressure acid leaching of converter slag show that leaching rates of vanadium and titanium are 96.87% and 8.76% respectively, at 140 ℃ of temperature, 0.5 MPa of oxygen partial pressure, 0.055-0.075mm of particle size, 15:1 of liquid to solid ratio, 120 min of leaching time, 500 r/min of stirring speed and 200 g/L of initial acid concentration. Vanadium and titanium could be selectively separated in the pressure acid leaching process, and the experiment result is in agreement with thermodynamic calculation result.展开更多
Objective: To evaluate the efficiency of an implanted chip system on blood pressure regulation. Methods: The mean arterial pressure (MAP) and heart rate (HR) were recorded in anesthetized rabbits. Based on the set poi...Objective: To evaluate the efficiency of an implanted chip system on blood pressure regulation. Methods: The mean arterial pressure (MAP) and heart rate (HR) were recorded in anesthetized rabbits. Based on the set point theory, an implanted chip system was designed to regulate the blood pressure by stimulating the aortic depressor nerve (ADN) according to the feedback of blood pressure. The blood pressure regulation induced by the implanted chip system was carried out twice (lasted for 15 min and 60 min respectively) and the change of MAP and HR during the regulation was compared with the control. Results: There was a significant decrease of MAP during the first regulation ([-32.0 ± 6.6] mmHg) and second regulation ([-27.4 ± 6.2] mmHg) compared with the control (P<0.01). The HR was also significantly decreased during regulation compared with the control. Both MAP and HR returned to the baseline immediately without rebound after the regulation ceased. Conclusion: The implanted chip system can regulate the blood pressure successfully and keep the blood pressure in a lower constant level without adaptation.展开更多
During the test on transient pressure signal in explosion field,false trigger caused by field interference can lead to test failure.To improve the stability of test system,a signal detection and recognition technology...During the test on transient pressure signal in explosion field,false trigger caused by field interference can lead to test failure.To improve the stability of test system,a signal detection and recognition technology is proposed for transient pressure test system.In the process of signal acquisition,firstly,electrical levels are monitored in real time to find effective abrupt changes and mark them;then the effective data segments are detecdted totected;thus the effective signals can be acquired in turn finally.The experimental results show that the shock wave signal can be collected effectively and the reliability of the test system can be improved after removal of interferences.展开更多
Vapor pressure of lead and lead chlorides from FeOT?CaO?SiO2?Al2O3 slag system was measured by using Knudsen effusion method. The results suggest that the vapor pressures of lead and lead chlorides increase with in...Vapor pressure of lead and lead chlorides from FeOT?CaO?SiO2?Al2O3 slag system was measured by using Knudsen effusion method. The results suggest that the vapor pressures of lead and lead chlorides increase with increasing temperature. For the slag systems without chlorine, the logarithm of vapor pressure (lnp) shows highly linear dependency on the reciprocal of temperature (1/T), and higher vapor pressure is observed in the condition where more metallic lead vapor is formed. In this case, the vapor pressure of lead increases with increasing slag basicity (w(CaO)/w(SiO2)), increasing FeO content andw(Fe2+)/w(Fe3+) ratio. For the case of slag system with chlorine addition, the total pressures of PbCl2 and PbCl increase with decreasing basicity and FeO content of slag.展开更多
The greenhouse has been increasingly used in the breeding industry. However, the high temperature inside the greenhouse in summer has not been effectively addressed. The spray cooling system sprays tiny droplets into ...The greenhouse has been increasingly used in the breeding industry. However, the high temperature inside the greenhouse in summer has not been effectively addressed. The spray cooling system sprays tiny droplets into the air. Thus the water molecules will be vaporized, absorbing heat and reducing ambient temperature. It is the only cooling method that can be used to cool the uneasily-sealed flexible greenhouse. We developed an energy-storing high pressure spray cooling system. The ordinary water pump is used as the source of high-pressure water. The partial kinetic energy is stored in the energy-storing tubes. When the water pump is stopped, the energy produced by releasing the compressed air can still be used to maintain the spray. And thus the use-cost and systematic wear would be reduced. The cooling system only requires 1 kilowatt hour of power per day. It has been widely used in summer to cool the breeding sheds. After a recent continuous improvement, its functions have been extended to disinfection, removing dust, humidifying and immunizing animals. In addition, it can also be used for the cooling and humidifying of squares, venues and streets in summer. The energy-storing high pressure spray cooling system has a broad application prospect.展开更多
For the shock wave overpressure signal measurement of explosion field, the type and equivalent of the ammunition as well as the distance from test nodes to ground zero have a great influence on the characteristics of ...For the shock wave overpressure signal measurement of explosion field, the type and equivalent of the ammunition as well as the distance from test nodes to ground zero have a great influence on the characteristics of shock wave signal. To ensure that shock wave signal with different characteristic parameters can be collected completely in the test of shooting range, a tran- sient pressure signal storage system with configurable parameters is presented. In order to meet the requirements of different test nodes, the system can set parameters of all test nodes by wireless communication in explosion field. The feasibility and re- liability of the system are fully verified through transient pressure measurement in explosion field.展开更多
Aiming at harsh environment of cluster bombs center tube explosion dispersion and difficulties in installation of traditional test systems,a storage test system based on 16-bit ultra-low power microcontroller MSP430 i...Aiming at harsh environment of cluster bombs center tube explosion dispersion and difficulties in installation of traditional test systems,a storage test system based on 16-bit ultra-low power microcontroller MSP430 is designed in order to acquire gas pressure during cluster bombs dispersion.To meet the requirement of low power consumption,the working states of system's modules during data acquisition are elaborated and the equation to calculate the gas pressure change during cylindrical center tube opening the hatch is deduced.The field test is conducted and good test results are obtained.展开更多
The main goal of spinal cord rehabilitation is to restore walking ability and improve walking quality after spinal cord injury(SCI). The spatiotemporal parameters of walking and the parameters of plantar pressure can ...The main goal of spinal cord rehabilitation is to restore walking ability and improve walking quality after spinal cord injury(SCI). The spatiotemporal parameters of walking and the parameters of plantar pressure can be obtained using a plantar pressure analysis system. Previous studies have reported step asymmetry in patients with bilateral SCI. However, the asymmetry of other parameters in patients with SCI has not been reported. This was a prospective, cross-sectional study, which included 23 patients with SCI, aged 48.1 ± 14.5 years, and 28 healthy subjects, aged 47.1 ± 9.8 years. All subjects underwent bare foot walking on a plantar pressure measurement device to measure walking speed and spatiotemporal parameters. Compared with healthy subjects, SCI patients had slower walking speed, longer stride time and stance time, larger stance phase percentage, and shorter stride length. The peak pressures under the metatarsal heads and toe were lower in SCI patients than in healthy subjects. In the heel, regional impulse and the contact area percentage in SCI patients were higher than those in healthy subjects. The symmetry indexes of stance time, step length, maximum force, impulse and contact area were increased in SCI patients, indicating a decline in symmetry. The results confirm that the gait quality, including spatiotemporal variables and plantar pressure parameters, and symmetry index were lower in SCI patients compared with healthy subjects. Plantar pressure parameters and symmetry index could be sensitive quantitative parameters to improve gait quality of SCI patients. The protocols were approved by the Clinical Research Ethics Committee of Shengjing Hospital of China Medical University(approval No. 2015 PS54 J) on August 13, 2015. This trial was registered in the ISRCTN Registry(ISRCTN42544587) on August 22, 2018. Protocol version: 1.0.展开更多
The ionic liquid, 1-butyl-3-methylimidazolium dibutylphosphate ([BMIM][DBP]) was prepared and the vapor pressures of three set of binary solutions H2O(1)/CH3OH(1)/C2H5OH(1) + [BMIM][DBP](2) were measured at different ...The ionic liquid, 1-butyl-3-methylimidazolium dibutylphosphate ([BMIM][DBP]) was prepared and the vapor pressures of three set of binary solutions H2O(1)/CH3OH(1)/C2H5OH(1) + [BMIM][DBP](2) were measured at different temperature and in the ILs mole fraction range from 0.1 to 0.6 with a static equilibrium apparatus. The measured vapor pressures were correlated with Non-Random Two Liquid (NRTL) activity coefficient model and the average relative deviations (ARD) between experimental and correlated vapor pressures for these binary solutions were 3.19%, 2.42% and 2.95%, respectively. Then, the vapor pressures of two set of ternary solutions H2O(1) + CH3OH(2)/C2H5OH(2) + [BMIM][DBP](3) were measured with an inclined boiling apparatus and further predicted with NRTL activity coefficient model based on the binary interaction parameters coming from fitting the vapor pressures of the binary solutions. The results indicated that the ternary solutions containing [BMIM][DBP] were shown a strong negative deviation from Raoult's Law when the mole fraction of [BMIM][DBP] was larger than 0.2, which meant that ternary solutions could absorb the refrigerant vapors at the same or below solution temperature. Meanwhile, the average relative deviations between experimental and predicted vapor pressures for ternary solutions were 2.92% and 3.06%, respectively. Consequently, the NRTL active coefficient model used for non-electrolyte solutions was still valid for predicting vapor-liquid equilibrium of binary or ternary solutions containing ILs.展开更多
文摘Background:High blood pressure(BP)is a major contributor to mortality and cardiovascular diseases.Despite the known benefits of exercise for reducing BP,it is crucial to identify the most effective physical activity(PA)intervention.This systematic review and network meta-analysis(NMA)aimed to evaluate the available evidence on the effectiveness of various PA interventions for reducing BP and to determine their hierarchy based on their impact on BP.Methods:A search of PubMed,SPORTDiscus,PsycINFO,Web of Science,CINAHL,Cochrane,and Eric databases was conducted up to December 2022 for this systematic review and NMA.Randomized controlled trials and quasi-experimental studies targeting healthy children and adolescents aged 6-12 years old were included in this study.Only studies that compared controlled and intervention groups using PA or exercise as the major influence were included.We followed the Preferred Reporting Items for Systematic Reviews and Meta-Analyses(PRISMA)guidelines.Three independent investigators performed the literature screening,data extraction,and risk of bias assessment.We used Bayesian arm-based NMA to synthesize the data.The primary outcomes were systolic BP and diastolic BP.We calculated the mean differences(MDs)in systolic BP and diastolic BP before and after treatment.Mean treatment differences were estimated using NMA and random-effect models.Results:We synthesized 27 studies involving 15,220 children and adolescents.PA combined with nutrition and behavior change was the most effective intervention for reducing both systolic BP and diastolic BP(MD=-8.64,95%credible interval(95%CI):-11.44 to-5.84;MD=-6.75,95%CI:-10.44 to-3.11),followed by interventions with multiple components(MD=-1.39,95%CI:-1.94 to-0.84;MD=-2.54,95%CI:-4.89 to-0.29).Conclusion:Our findings suggest that PA interventions incorporating nutrition and behavior change,followed by interventions with multiple components,are most effective for reducing both systolic BP and diastolic BP in children and adolescents.
文摘Context/objectives: The fight against Chronic Non-Communicable Diseases (NCDs) is a long-term undertaking, which requires available, motivated and well-managed human resources (HR). The administrative management of skills on both qualitative and quantitative levels is one of the essential functions of a health system. To better implement policies of fight against High Blood Pressure (HBP) and other chronic diseases, it is important to establish strategies to retain health personnel. This loyalty requires favorable working conditions and consideration of the contribution-reward couple. Good working conditions are likely to reduce the phenomenon of medical nomadism;conversely, poor HR management can contribute to their exodus towards exotic “green pastures”, thus leading to an additional crisis in the Cameroonian health system. The fight against HBP is a complex, multifaceted and multifactorial reality that requires appropriate management model for all types of resources mainly HR. The main objective of this research is to show the impact of poor management of human resources in Cameroon health system on medical nomadism and the ineffectiveness of the fight against High Blood Pressure. Method: A cross-sectional descriptive survey among five hundred (500) health facilities in the center region of Cameroon has been conducted. A stratified probabilistic technique has been used, and the number of health facilities to be surveyed has been determined using the “sample size estimation table” of Depelteau. The physical questionnaires have been printed and then distributed to data collectors. After data collection, the latter were grouped during processing in Excel sheets. The Chi-square test was used for data with a qualitative value and that of Kolmogorov-Sminorf for data with a quantitative value to assess the normality and reliability of data. The Crochach’s Alpha reliability test allowed us to have a summary of the means and variances and then to search for intragroup correlations between variables. Descriptive analysis was possible with the XLSTAT 2016 software. Results: 43.60% of Health Facilities (HF) managers were unqualified. 82.20% of HF managers have staff in a situation of professional insecurity. They are mainly contractual (49.00), decision-making agents (24.40%), casual agents (08.80). The proportion of unstable personnel is average of 22.00% and very unstable, 12.00%.
基金the support of the Opening Fund of State Key Laboratory of Multiphase Flow in Power Engineering(SKLMF-KF-2102)。
文摘Accurate prediction of the frictional pressure drop is important for the design and operation of subsea oil and gas transporting system considering the length of the pipeline. The applicability of the correlations to pipeline-riser flow needs evaluation since the flow condition in pipeline-riser is quite different from the original data where they were derived from. In the present study, a comprehensive evaluation of 24prevailing correlation in predicting frictional pressure drop is carried out based on experimentally measured data of air-water and air-oil two-phase flows in pipeline-riser. Experiments are performed in a system having different configuration of pipeline-riser with the inclination of the downcomer varied from-2°to-5°to investigated the effect of the elbow on the frictional pressure drop in the riser. The inlet gas velocity ranges from 0.03 to 6.2 m/s, and liquid velocity varies from 0.02 to 1.3 m/s. A total of885 experimental data points including 782 on air-water flows and 103 on air-oil flows are obtained and used to access the prediction ability of the correlations. Comparison of the predicted results with the measured data indicate that a majority of the investigated correlations under-predict the pressure drop on severe slugging. The result of this study highlights the requirement of new method considering the effect of pipe layout on the frictional pressure drop.
基金We would like to thank the associate editor and the reviewers for their constructive comments.This work was supported in part by the National Natural Science Foundation of China under Grant 62203234in part by the State Key Laboratory of Robotics of China under Grant 2023-Z03+1 种基金in part by the Natural Science Foundation of Liaoning Province under Grant 2023-BS-025in part by the Research Program of Liaoning Liaohe Laboratory under Grant LLL23ZZ-02-02.
文摘High-precision and real-time diagnosis of sucker rod pumping system(SRPS)is important for quickly mastering oil well operations.Deep learning-based method for classifying the dynamometer card(DC)of oil wells is an efficient diagnosis method.However,the input of the DC as a two-dimensional image into the deep learning framework suffers from low feature utilization and high computational effort.Additionally,different SRPSs in an oil field have various system parameters,and the same SRPS generates different DCs at different moments.Thus,there is heterogeneity in field data,which can dramatically impair the diagnostic accuracy.To solve the above problems,a working condition recognition method based on 4-segment time-frequency signature matrix(4S-TFSM)and deep learning is presented in this paper.First,the 4-segment time-frequency signature(4S-TFS)method that can reduce the computing power requirements is proposed for feature extraction of DC data.Subsequently,the 4S-TFSM is constructed by relative normalization and matrix calculation to synthesize the features of multiple data and solve the problem of data heterogeneity.Finally,a convolutional neural network(CNN),one of the deep learning frameworks,is used to determine the functioning conditions based on the 4S-TFSM.Experiments on field data verify that the proposed diagnostic method based on 4S-TFSM and CNN(4S-TFSM-CNN)can significantly improve the accuracy of working condition recognition with lower computational cost.To the best of our knowledge,this is the first work to discuss the effect of data heterogeneity on the working condition recognition performance of SRPS.
基金supported by the“Pioneer”and“Leading Goose”R&D Program of Zhejiang(No.2022C04014)Zhejiang Science and Technology Major Program on Agricultural New Variety Breeding(No.2021C02068-10).
文摘Birds,a fascinating and diverse group occupying various habitats worldwide,exhibit a wide range of life-history traits,reproductive methods,and migratory behaviors,all of which influence their immune systems.The association between major histocompatibility complex(MHC)genes and certain ecological factors in response to pathogen selection has been extensively studied;however,the role of the co-working molecule T cell receptor(TCR)remains poorly understood.This study aimed to analyze the copy numbers of TCR-V genes,the selection pressure(ωvalue)on MHC genes using available genomic data,and their potential ecological correlates across 93 species from 13 orders.The study was conducted using the publicly available genome data of birds.Our findings suggested that phylogeny influences the variability in TCR-V gene copy numbers and MHC selection pressure.The phylogenetic generalized least squares regression model revealed that TCR-Vαδcopy number and MHC-I selection pressure were positively associated with body mass.Clutch size was correlated with MHC selection pressure,and Migration was correlated with TCR-Vβcopy number.Further analyses revealed that the TCR-Vβcopy number was positively correlated with MHC-IIB selection pressure,while the TCR-Vγcopy number was negatively correlated with MHC-I peptide-binding region selection pressure.Our findings suggest that TCR-V diversity is significant in adaptive evolution and is related to species’life-history strategies and immunological defenses and provide valuable insights into the mechanisms underlying TCR-V gene duplication and MHC selection in avian species.
文摘Nuclear power plants exhibit non-linear and time-variable dynamics.Therefore,designing a control system that sets the reactor power and forces it to follow the desired load is complicated.A supercritical water reactor(SCWR)is a fourth-generation conceptual reactor.In an SCWR,the non-linear dynamics of the reactor require a controller capable of control-ling the nonlinearities.In this study,a pressure-tube-type SCWR was controlled during reactor power maneuvering with a higher order sliding mode,and the reactor outgoing steam temperature and pressure were controlled simultaneously.In an SCWR,the temperature,pressure,and power must be maintained at a setpoint(desired value)during power maneuvering.Reactor point kinetics equations with three groups of delayed neutrons were used in the simulation.Higher-order and classic sliding mode controllers were separately manufactured to control the plant and were compared with the PI controllers speci-fied in previous studies.The controlled parameters were reactor power,steam temperature,and pressure.Notably,for these parameters,the PI controller had certain instabilities in the presence of disturbances.The classic sliding mode controller had a higher accuracy and stability;however its main drawback was the chattering phenomenon.HOSMC was highly accurate and stable and had a small computational cost.In reality,it followed the desired values without oscillations and chattering.
基金National Science and Technology Major Projects(2017-V-0012-0064)。
文摘The high turbulence of unstable combustion in the working process of liquid rocket engine will cause periodic pressure pulsation.Therefore,a pressure pulsation device that is easy to reuse,broadband,suited for poisonous media,and high pressure is designed and produced.Numerical and experimental studies show that the pulsator produces stable pressure waveforms at different flow rates,pressures,and frequencies,while the pressure waveform amplitude at the excitation frequency is larger.The pressure waveform amplitude increases exponentially with the flow rate and with smaller gaps and linear pressure increasing.The pressure waveform amplitude varies greatly at different frequencies along the pipeline.As the frequency increases,the pressure waveform amplitude of the excitation increases first and then decreases.The pressure waveform amplitude at low frequencies changes little along the pipeline.The pressure waveform amplitude at medium frequencies readily couples to the pipeline flow field and increases its value.The pressure waveform amplitude at high frequencies attenuates along the pipeline,where attenuation increases with frequency.The ability of the pulsator to provide stable excitation and high pressure is verified through normal and high pressure testsindifferentpipelinesystems.
基金supported by the Russian Science Foundation(grant number 20-19-00226).
文摘One of the effective options for energy saving in terms of heat costs for the formation of routine thermal conditions of working areas of large-sized industrial premises is the replacement of traditional convective(water)heating systems with systems,the main part of which are gas infrared emitters.But the mass introduction of such systems based on emitters was held back until recently by the lack of scientific and technical foundations for ensuring not only the routine thermal conditions of local working areas,but also ensuring acceptable concentrations of carbon dioxide,which is formed during the operation of a gas emitter.Solving the latter problem by the method of experimental selection of heating and air exchange modes is practically impossible due to the multivariate nature of possible solutions to this problem.Therefore,the purpose of the work is to analyze the results of theoretical studies of the possibility of ensuring an acceptable level of carbon dioxide concentrations in local working areas during the operation of gas infrared emitters and an air exchange system.Numerical modeling of heat and mass transfer processes under such conditions was performed in a fairly wide range of the main significant factors:air flow rate in the air exchange system from 0.01 to 0.04 kg/s,the position of the air inlet and outlet channels relative to the radiator and the local workplace(height from 0.3 to 4.1 m).It was found that by varying the numerical values of these factors,it is possible to ensure carbon dioxide concentrations in the local working area within the permissible limits of up to 1400 ppm.
基金supported by the General Program of the National Natural Science Foundation of China(No.52274326)the China Baowu Low Carbon Metallurgy Innovation Foundation(No.BWLCF202109)the Seventh Batch of Ten Thousand Talents Plan of China(No.ZX20220553).
文摘Sinter is the core raw material for blast furnaces.Flue pressure,which is an important state parameter,affects sinter quality.In this paper,flue pressure prediction and optimization were studied based on the shapley additive explanation(SHAP)to predict the flue pressure and take targeted adjustment measures.First,the sintering process data were collected and processed.A flue pressure prediction model was then constructed after comparing different feature selection methods and model algorithms using SHAP+extremely random-ized trees(ET).The prediction accuracy of the model within the error range of±0.25 kPa was 92.63%.SHAP analysis was employed to improve the interpretability of the prediction model.The effects of various sintering operation parameters on flue pressure,the relation-ship between the numerical range of key operation parameters and flue pressure,the effect of operation parameter combinations on flue pressure,and the prediction process of the flue pressure prediction model on a single sample were analyzed.A flue pressure optimization module was also constructed and analyzed when the prediction satisfied the judgment conditions.The operating parameter combination was then pushed.The flue pressure was increased by 5.87%during the verification process,achieving a good optimization effect.
基金supported by the National Natural Science Foundation of China(Grant Nos.U22A20184,52250077,and 52272080)the Jilin Province Natural Science Foundation of China(No.20220201093GX)+2 种基金the Fundamental Research Funds for the Central Universitiessupported by the National Research Foundation of Korea(2018R1A3B1052702 to JSK)the Starting growth Technological R&D Program(TIPS Program,No.S3201803,2021,MW)funded by the Ministry of SMEs and Startups(MSS,Korea).
文摘The rising flexible and intelligent electronics greatly facilitate the noninvasive and timely tracking of physiological information in telemedicine healthcare.Meticulously building bionic-sensitive moieties is vital for designing efficient electronic skin with advanced cognitive functionalities to pluralistically capture external stimuli.However,realistic mimesis,both in the skin’s three-dimensional interlocked hierarchical structures and synchronous encoding multistimuli information capacities,remains a challenging yet vital need for simplifying the design of flexible logic circuits.Herein,we construct an artificial epidermal device by in situ growing Cu_(3)(HHTP)_(2) particles onto the hollow spherical Ti_(3)C_(2)T_(x) surface,aiming to concurrently emulate the spinous and granular layers of the skin’s epidermis.The bionic Ti_(3)C_(2)T_(x)@Cu_(3)(HHTP)_(2) exhibits independent NO_(2) and pressure response,as well as novel functionalities such as acoustic signature perception and Morse code-encrypted message communication.Ultimately,a wearable alarming system with a mobile application terminal is self-developed by integrating the bimodular senor into flexible printed circuits.This system can assess risk factors related with asthmatic,such as stimulation of external NO_(2) gas,abnormal expiratory behavior and exertion degrees of fingers,achieving a recognition accuracy of 97.6%as assisted by a machine learning algorithm.Our work provides a feasible routine to develop intelligent multifunctional healthcare equipment for burgeoning transformative telemedicine diagnosis.
文摘High-temperature experiments were carried out for the slag systems of“FeO”−SiO_(2)−CaO−Al_(2)O_(3)and“FeO”−SiO_(2)−CaO−MgO at 1200℃and p(O_(2))of 10^(−7)kPa.The equilibrated samples were quenched,and the phase compositions were measured by electron probe microanalysis(EPMA).A series of pseudo-ternary and pseudo-binary phase diagrams are constructed to demonstrate their applications in copper smelting process and evaluation of the thermodynamic database.Spinel and tridymite are identified to be the major primary phases in the composition range related to the copper smelting slags.It is found that the operating window of the smelting slag is primarily determined by w_(Fe)/w_(SiO_(2))ratio in the slag.Both MgO and Al_(2)O_(3)in the slag reduce the operating window which requires extra fluxing agent to keep the slag to be fully liquid.Complex spinel solid solutions cause inaccurate predictions of the current thermodynamic database.
基金Project(2007CB613504)supported by the National Key Basic Research Program of ChinaProjects(51004033,50974035,51074047)supported by the National Natural Science Foundation of ChinaProject(2008BAB34B01)supported by National Science and Technology Support Plan of China during the 11th Five-Year Plan
文摘To analyze the thermodynamic characteristics of leaching process of converter slag, φ-pH diagram of V-Ti-H2O system at oxygen partial pressure of 0.5 MPa, ionic mass concentration of 0.1 mol/kg and temperatures ranging from 60 to 200 ℃ was obtained by recently published critically assessed standard Gibbs energies and activity coefficients of various species. When pH2, stable regions of V3+, VO2+ and VO2+ exist in the stable region of TiO2. The pH values of stable regions of vanadium and titanium decrease and redox potentials become more positive with the temperature increasing. Vanadium and titanium could be separated by one-step leaching based on thermodynamics. The experiment results of pressure acid leaching of converter slag show that leaching rates of vanadium and titanium are 96.87% and 8.76% respectively, at 140 ℃ of temperature, 0.5 MPa of oxygen partial pressure, 0.055-0.075mm of particle size, 15:1 of liquid to solid ratio, 120 min of leaching time, 500 r/min of stirring speed and 200 g/L of initial acid concentration. Vanadium and titanium could be selectively separated in the pressure acid leaching process, and the experiment result is in agreement with thermodynamic calculation result.
文摘Objective: To evaluate the efficiency of an implanted chip system on blood pressure regulation. Methods: The mean arterial pressure (MAP) and heart rate (HR) were recorded in anesthetized rabbits. Based on the set point theory, an implanted chip system was designed to regulate the blood pressure by stimulating the aortic depressor nerve (ADN) according to the feedback of blood pressure. The blood pressure regulation induced by the implanted chip system was carried out twice (lasted for 15 min and 60 min respectively) and the change of MAP and HR during the regulation was compared with the control. Results: There was a significant decrease of MAP during the first regulation ([-32.0 ± 6.6] mmHg) and second regulation ([-27.4 ± 6.2] mmHg) compared with the control (P<0.01). The HR was also significantly decreased during regulation compared with the control. Both MAP and HR returned to the baseline immediately without rebound after the regulation ceased. Conclusion: The implanted chip system can regulate the blood pressure successfully and keep the blood pressure in a lower constant level without adaptation.
基金The 11th Postgraduate Technology Innovation Project of North University of China(No.20141142)
文摘During the test on transient pressure signal in explosion field,false trigger caused by field interference can lead to test failure.To improve the stability of test system,a signal detection and recognition technology is proposed for transient pressure test system.In the process of signal acquisition,firstly,electrical levels are monitored in real time to find effective abrupt changes and mark them;then the effective data segments are detecdted totected;thus the effective signals can be acquired in turn finally.The experimental results show that the shock wave signal can be collected effectively and the reliability of the test system can be improved after removal of interferences.
基金Project supported by the Japan Oil,Gas and Metals National Corporation(JOGMEC)Project(51474021)supported by the National Natural Science Foundation of China
文摘Vapor pressure of lead and lead chlorides from FeOT?CaO?SiO2?Al2O3 slag system was measured by using Knudsen effusion method. The results suggest that the vapor pressures of lead and lead chlorides increase with increasing temperature. For the slag systems without chlorine, the logarithm of vapor pressure (lnp) shows highly linear dependency on the reciprocal of temperature (1/T), and higher vapor pressure is observed in the condition where more metallic lead vapor is formed. In this case, the vapor pressure of lead increases with increasing slag basicity (w(CaO)/w(SiO2)), increasing FeO content andw(Fe2+)/w(Fe3+) ratio. For the case of slag system with chlorine addition, the total pressures of PbCl2 and PbCl increase with decreasing basicity and FeO content of slag.
基金Supported by Jiangsu Agricultural Science and Technology Innovation Fund[CX(12)1001-04]~~
文摘The greenhouse has been increasingly used in the breeding industry. However, the high temperature inside the greenhouse in summer has not been effectively addressed. The spray cooling system sprays tiny droplets into the air. Thus the water molecules will be vaporized, absorbing heat and reducing ambient temperature. It is the only cooling method that can be used to cool the uneasily-sealed flexible greenhouse. We developed an energy-storing high pressure spray cooling system. The ordinary water pump is used as the source of high-pressure water. The partial kinetic energy is stored in the energy-storing tubes. When the water pump is stopped, the energy produced by releasing the compressed air can still be used to maintain the spray. And thus the use-cost and systematic wear would be reduced. The cooling system only requires 1 kilowatt hour of power per day. It has been widely used in summer to cool the breeding sheds. After a recent continuous improvement, its functions have been extended to disinfection, removing dust, humidifying and immunizing animals. In addition, it can also be used for the cooling and humidifying of squares, venues and streets in summer. The energy-storing high pressure spray cooling system has a broad application prospect.
基金The 11th Postgraduate Technological Innovation Project of North University of China(No.20141150)
文摘For the shock wave overpressure signal measurement of explosion field, the type and equivalent of the ammunition as well as the distance from test nodes to ground zero have a great influence on the characteristics of shock wave signal. To ensure that shock wave signal with different characteristic parameters can be collected completely in the test of shooting range, a tran- sient pressure signal storage system with configurable parameters is presented. In order to meet the requirements of different test nodes, the system can set parameters of all test nodes by wireless communication in explosion field. The feasibility and re- liability of the system are fully verified through transient pressure measurement in explosion field.
文摘Aiming at harsh environment of cluster bombs center tube explosion dispersion and difficulties in installation of traditional test systems,a storage test system based on 16-bit ultra-low power microcontroller MSP430 is designed in order to acquire gas pressure during cluster bombs dispersion.To meet the requirement of low power consumption,the working states of system's modules during data acquisition are elaborated and the equation to calculate the gas pressure change during cylindrical center tube opening the hatch is deduced.The field test is conducted and good test results are obtained.
基金supported by the New Technique Project of Shengjing Hospital of China Medical University,China,No.2015-117(to XNY)
文摘The main goal of spinal cord rehabilitation is to restore walking ability and improve walking quality after spinal cord injury(SCI). The spatiotemporal parameters of walking and the parameters of plantar pressure can be obtained using a plantar pressure analysis system. Previous studies have reported step asymmetry in patients with bilateral SCI. However, the asymmetry of other parameters in patients with SCI has not been reported. This was a prospective, cross-sectional study, which included 23 patients with SCI, aged 48.1 ± 14.5 years, and 28 healthy subjects, aged 47.1 ± 9.8 years. All subjects underwent bare foot walking on a plantar pressure measurement device to measure walking speed and spatiotemporal parameters. Compared with healthy subjects, SCI patients had slower walking speed, longer stride time and stance time, larger stance phase percentage, and shorter stride length. The peak pressures under the metatarsal heads and toe were lower in SCI patients than in healthy subjects. In the heel, regional impulse and the contact area percentage in SCI patients were higher than those in healthy subjects. The symmetry indexes of stance time, step length, maximum force, impulse and contact area were increased in SCI patients, indicating a decline in symmetry. The results confirm that the gait quality, including spatiotemporal variables and plantar pressure parameters, and symmetry index were lower in SCI patients compared with healthy subjects. Plantar pressure parameters and symmetry index could be sensitive quantitative parameters to improve gait quality of SCI patients. The protocols were approved by the Clinical Research Ethics Committee of Shengjing Hospital of China Medical University(approval No. 2015 PS54 J) on August 13, 2015. This trial was registered in the ISRCTN Registry(ISRCTN42544587) on August 22, 2018. Protocol version: 1.0.
基金Supported by the National Natural Science Foundation of China (51076021)
文摘The ionic liquid, 1-butyl-3-methylimidazolium dibutylphosphate ([BMIM][DBP]) was prepared and the vapor pressures of three set of binary solutions H2O(1)/CH3OH(1)/C2H5OH(1) + [BMIM][DBP](2) were measured at different temperature and in the ILs mole fraction range from 0.1 to 0.6 with a static equilibrium apparatus. The measured vapor pressures were correlated with Non-Random Two Liquid (NRTL) activity coefficient model and the average relative deviations (ARD) between experimental and correlated vapor pressures for these binary solutions were 3.19%, 2.42% and 2.95%, respectively. Then, the vapor pressures of two set of ternary solutions H2O(1) + CH3OH(2)/C2H5OH(2) + [BMIM][DBP](3) were measured with an inclined boiling apparatus and further predicted with NRTL activity coefficient model based on the binary interaction parameters coming from fitting the vapor pressures of the binary solutions. The results indicated that the ternary solutions containing [BMIM][DBP] were shown a strong negative deviation from Raoult's Law when the mole fraction of [BMIM][DBP] was larger than 0.2, which meant that ternary solutions could absorb the refrigerant vapors at the same or below solution temperature. Meanwhile, the average relative deviations between experimental and predicted vapor pressures for ternary solutions were 2.92% and 3.06%, respectively. Consequently, the NRTL active coefficient model used for non-electrolyte solutions was still valid for predicting vapor-liquid equilibrium of binary or ternary solutions containing ILs.