To achieve better observation for sea surface,a new generation of wide-swath interferometric altimeter satellites is proposed.Before satellite launch,it is particularly important to study the data processing methods a...To achieve better observation for sea surface,a new generation of wide-swath interferometric altimeter satellites is proposed.Before satellite launch,it is particularly important to study the data processing methods and carry out the detailed error analysis of ocean satellites,because it is directly related to the ultimate ability of satellites to capture ocean information.For this purpose,ocean eddies are considered a specific case of ocean signals,and it can cause significant changes in sea surface elevation.It is suitable for theoretical simulation of the sea surface and systematic simulation of the altimeter.We analyzed the impacts of random error and baseline error on the sea surface and ocean signals and proposed a combined strategy of low-pass filtering,empirical orthogonal function(EOF)decomposition,and linear fitting to remove the errors.Through this strategy,sea surface anomalies caused by errors were considerably improved,and the capability of satellite for capturing ocean information was enhanced.Notably,we found that the baseline error in sea surface height data was likely to cause inaccuracy in eddy boundary detection,as well as false eddy detection.These abnormalities could be prevented for"clean"sea surface height after the errors removal.展开更多
基金Supported by the National Key R&D Program of China(No.2016YFC1401008)the Key R&D Program of Shandong Province,China(No.2019GHY112055)+6 种基金the National Natural Science Foundation of China(Nos.U2006211,42090044,41606200,41776183,41906157)the Major Scientifi c and Technological Innovation Projects in Shandong Province(No.2019JZZY010102)the Strategic Priority Research Program of the Chinese Academy of Sciences(Nos.XDA19060101,XDB42000000)the Key Project of Center for Ocean Mega-Science,Chinese Academy of Sciences(No.COMS2019R02)the CAS(Chinese Academy of Sciences)100-Talent Program(No.Y9KY04101L)the Marine S&T Fund of Shandong Province for Pilot National Laboratory for Marine Science and Technology(Qingdao)(No.2018SDKJ0102-2)the Fundamental Research Funds for the Central Universities(Hohai University)(No.2018B41814)。
文摘To achieve better observation for sea surface,a new generation of wide-swath interferometric altimeter satellites is proposed.Before satellite launch,it is particularly important to study the data processing methods and carry out the detailed error analysis of ocean satellites,because it is directly related to the ultimate ability of satellites to capture ocean information.For this purpose,ocean eddies are considered a specific case of ocean signals,and it can cause significant changes in sea surface elevation.It is suitable for theoretical simulation of the sea surface and systematic simulation of the altimeter.We analyzed the impacts of random error and baseline error on the sea surface and ocean signals and proposed a combined strategy of low-pass filtering,empirical orthogonal function(EOF)decomposition,and linear fitting to remove the errors.Through this strategy,sea surface anomalies caused by errors were considerably improved,and the capability of satellite for capturing ocean information was enhanced.Notably,we found that the baseline error in sea surface height data was likely to cause inaccuracy in eddy boundary detection,as well as false eddy detection.These abnormalities could be prevented for"clean"sea surface height after the errors removal.