The combination of structural health monitoring and vibration control is of great importance to provide components of smart structures.While synthetic algorithms have been proposed,adaptive control that is compatible ...The combination of structural health monitoring and vibration control is of great importance to provide components of smart structures.While synthetic algorithms have been proposed,adaptive control that is compatible with changing conditions still needs to be used,and time-varying systems are required to be simultaneously estimated with the application of adaptive control.In this research,the identification of structural time-varying dynamic characteristics and optimized simple adaptive control are integrated.First,reduced variations of physical parameters are estimated online using the multiple forgetting factor recursive least squares(MFRLS)method.Then,the energy from the structural vibration is simultaneously specified to optimize the control force with the identified parameters to be operational.Optimization is also performed based on the probability density function of the energy under the seismic excitation at any time.Finally,the optimal control force is obtained by the simple adaptive control(SAC)algorithm and energy coefficient.A numerical example and benchmark structure are employed to investigate the efficiency of the proposed approach.The simulation results revealed the effectiveness of the integrated online identification and optimal adaptive control in systems.展开更多
Maintaining the integrity and longevity of structures is essential in many industries,such as aerospace,nuclear,and petroleum.To achieve the cost-effectiveness of large-scale systems in petroleum drilling,a strong emp...Maintaining the integrity and longevity of structures is essential in many industries,such as aerospace,nuclear,and petroleum.To achieve the cost-effectiveness of large-scale systems in petroleum drilling,a strong emphasis on structural durability and monitoring is required.This study focuses on the mechanical vibrations that occur in rotary drilling systems,which have a substantial impact on the structural integrity of drilling equipment.The study specifically investigates axial,torsional,and lateral vibrations,which might lead to negative consequences such as bit-bounce,chaotic whirling,and high-frequency stick-slip.These events not only hinder the efficiency of drilling but also lead to exhaustion and harm to the system’s components since they are difficult to be detected and controlled in real time.The study investigates the dynamic interactions of these vibrations,specifically in their high-frequency modes,usingfield data obtained from measurement while drilling.Thefindings have demonstrated the effect of strong coupling between the high-frequency modes of these vibrations on drilling sys-tem performance.The obtained results highlight the importance of considering the interconnected impacts of these vibrations when designing and implementing robust control systems.Therefore,integrating these compo-nents can increase the durability of drill bits and drill strings,as well as improve the ability to monitor and detect damage.Moreover,by exploiting thesefindings,the assessment of structural resilience in rotary drilling systems can be enhanced.Furthermore,the study demonstrates the capacity of structural health monitoring to improve the quality,dependability,and efficiency of rotary drilling systems in the petroleum industry.展开更多
The developed auxiliary software serves to simplify, standardize and facilitate the software loading of the structural organization of a complex technological system, as well as its further manipulation within the pro...The developed auxiliary software serves to simplify, standardize and facilitate the software loading of the structural organization of a complex technological system, as well as its further manipulation within the process of solving the considered technological system. Its help can be especially useful in the case of a complex structural organization of a technological system with a large number of different functional elements grouped into several technological subsystems. This paper presents the results of its application for a special complex technological system related to the reference steam block for the combined production of heat and electricity.展开更多
We know that the total daily energy dissipation increases in complex organisms like the humans. It’s very probable that this increase in total energy dissipation is related to the progressive increase in mass. But we...We know that the total daily energy dissipation increases in complex organisms like the humans. It’s very probable that this increase in total energy dissipation is related to the progressive increase in mass. But we also know that day by day the dissipation of energy per unit mass decreases in these organisms. We intend to verify if this decrease is only an expression of the second law of thermodynamics, or if it is related to the increase in mass that occurs in these organisms. For this, we set ourselves the following objectives: verify the correlation between total energy dissipation and the evolution of body mass, and verify the correlation between the dissipation of energy per unit of mass and the evolution of body mass. As a result of the data analysis, we found a high degree of correlation between total energy dissipation and the evolution of body mass. And we also found a high correlation between the energy dissipated per unit of mass and the evolution of body mass. We can conclude that self-organization produces not only an increase in mass, but also a decline in energy dissipation per unit mass beyond what is expected by the second law of thermodynamics.展开更多
The structural and tectonic evolution of the Bengal Basin is characterized by a complex interplay of factors, including sedimentation, the rise of the Himalayan Mountains, and the movements of Jurassic syn-rift faults...The structural and tectonic evolution of the Bengal Basin is characterized by a complex interplay of factors, including sedimentation, the rise of the Himalayan Mountains, and the movements of Jurassic syn-rift faults. This study aims to comprehend the progression of growth faults inside the basin by examining fault geometry, basin development, and structural relief patterns. We used high-quality 2D seismic lines from the PK-MY-8403, classical seismic interpretation techniques and modeling were carried out to reveal the plate tectonic conditions, stratigraphy, and sedimentation history of the basin. The break-up unconformity, Paleocene and Eocene submerged conditions, and crucial geological formations including the Sylhet Limestone, Barail Group, and Surma Group were among the notable features recognized in seismic section. With an emphasis on growth strata and pre-growth strata, significant variations in layer thickness and relief were remarked in different stratigraphic levels. Basin development events like the evolution of the Miocene remnant ocean basin, sedimentation in Oligocene, Eocene Himalayan collision, and the Pliocene reverse fault development are analyzed. In the early the Pliocene compressional forces outpaced sedimentation rates and syn-depositional normal faults of Oligocene time began to move in opposite direction. Syn-depositional growth faults may have formed in the Bengal Basin as a result of this reversal. This research provides a detailed comprehensive knowledge of growth fault development in the Bengal Basin following the seismic interpretation, modelling, and thickness/relief analysis. The outcomes point to a substantial hydrocarbon potential, especially in regions like the Eocene Hinge Zone, where the prospectivity of the area is enhanced by carbonate reefs and Jalangi shale. However, the existence of petroleum four-way closure in the investigated region requires further investigation.展开更多
The molten mixtures of alkali metal fluorides and aluminum fluoride are applied as aluminum electrolytes or brazing fluxes.However,the presence of Al2F-7^-in such molten systems is disputed.In the present study,MF-AlF...The molten mixtures of alkali metal fluorides and aluminum fluoride are applied as aluminum electrolytes or brazing fluxes.However,the presence of Al2F-7^-in such molten systems is disputed.In the present study,MF-AlF3(M=K,Cs)systems with molar ratios<1 were studied by in-situ Raman spectroscopy and molecular simulation.The results show that,in addition to AlF6^(3-),AlF5^(2-),and AlF4^-,the systems also contained Al2F-7^-.The characteristic bands in the Raman spectra belonging to Al2F-7^-were located at about 225 cm^-1,315 cm^-1,479 cm^-1,and 720 cm^-1.There are two possible structures of Al2F-7^-,which belong to the D3d and D3hpoint groups.Both of these structures are linear,and their single-point energies were found to differ by only 0.31 kcal/mol.展开更多
It is known that structural stiffness and strength distributions have an important role in the seismic response of buildings. The effect of using different code-specified lateral load patterns on the seismic performan...It is known that structural stiffness and strength distributions have an important role in the seismic response of buildings. The effect of using different code-specified lateral load patterns on the seismic performance of fixed-base buildings has been investigated by researchers during the past two decades. However, no investigation has yet been carried out for the case of soil-structure systems. In the present study, through intensive parametric analyses of 21,600 linear and nonlinear MDOF systems and considering five different shear strength and stiffness distribution patterns, including three code-specified patterns as well as uniform and concentric patterns subjected to a group of earthquakes recorded on alluvium and soft soils, the effect of structural characteristics distribution on the strength demand and ductility reduction factor of MDOF fixed-base and soil-structure systems are parametrically investigated. The results of this study show that depending on the level of inelasticity, soil flexibility and number of degrees-of-freedoms (DOFs), structural characteristics distribution can significantly affect the strength demand and ductility reduction factor of MDOF systems. It is also found that at high levels of inelasticity, the ductility reduction factor of low-rise MDOF soil-structure systems could be significantly less than that of fixed-base structures and the reduction is less pronounced as the number of stories increases.展开更多
This paper aimed at studying the effect of different types of soil tillage systems on the change of total carbon (C) and nitrogen (N) in the soil structural units of different size after dry structural analysis of...This paper aimed at studying the effect of different types of soil tillage systems on the change of total carbon (C) and nitrogen (N) in the soil structural units of different size after dry structural analysis of soil. The research was carried out in a 6-field rotation system (grain maize-wheat-sunflower-wheat-bean-wheat) at the end of the 2nd rotation. Six out of 24 soil tillage systems were selected; they were applied independently and in combination in the crop rotation. After that, they were compared to the system with constant deep plowing. So a total of seven soil tillage systems were investigated. The selected systems for main soil tillage were the following: plowing (control variant), disking, cutting, nil tillage (direct sowing), plowing-disking, plowing-nil tillage, disking-nil tillage. Three depths of 0-10, 10-20 and 20-30 cm were studied, as well as soil structural units were of the following sizes: 〉 10 mm, 10-5, 5-3, 3-1, 1-0.25 mm and 〈 0.25 mm. As a result of systematic implementation of different soil tillage systems, higher N and C concentrations were established by the layers according to constant plowing. Constant disking and its alternation with nil tillage increased the total N concentration with 15.6% and 11.1%, respectively, in comparison with the constant plowing. The same was valid for C concentration in soil, but the highest increase was established in the variants with constant cutting and nil tillage. The exceeding was with 14.0% and 13.2%, in comparison to constant plowing. The redistribution of N and C depending on the structural soil units was most expressed in the 0-10 cm and 10-20 cm layers. The highest amounts of C and N were found in the soil units with size less than 5 mm, mainly in the 〈 0.25 mm fraction. At depth of 20-30 cm, the role of the size of soil structural units for C and N redistribution decreased strongly. The values of C/N ratio were moderate only under the use of constant disking. This index was low under all other soil tillage systems. The correlation of total N with C in soil was high, positive and significant depending on the size of structural soil units and the tillage systems, as average for the investigated factors in this experiment. The minimal tillage and the tillage without turning of soil, used independently and in combination, had the highest contribution to preserving the organic matter in the haplic Chernozems of Dobrudzha region.展开更多
This paper analyzes the random response of structural-acoustic coupled systems. Most existing works on coupled structural-acoustic analysis are limited to systems under deterministic excitations due to high computatio...This paper analyzes the random response of structural-acoustic coupled systems. Most existing works on coupled structural-acoustic analysis are limited to systems under deterministic excitations due to high computational cost required by a random response analysis. To reduce the computational burden involved in the coupled random analysis, an iterative procedure based on the Pseudo excitation method has been developed. It is found that this algorithm has an overwhelming advantage in computing efficiency over traditional methods, as demonstrated by some numerical examples given in this paper.展开更多
The loss factors and their effects on the magnitude and frequency of resonance peaks in various mechanical sys-tems are reviewed for acoustic,vibration,and vibration fatigue applications.The main trends and relationsh...The loss factors and their effects on the magnitude and frequency of resonance peaks in various mechanical sys-tems are reviewed for acoustic,vibration,and vibration fatigue applications.The main trends and relationships were obtained for linear mechanical models with hysteresis damping.The well-known features(complex module of elasticity,total loss factor,etc.)are clarified for practical engineers and students,and new results are presented(in particular,for 2-DOF in-series models with hysteresis friction).The results are of both educational and prac-tical interest and may be applied for NVH analysis and testing,mechanical and aeromechanical design,and noise and vibration control in buildings.展开更多
Basin and orogenic belt belong to the same tectonic system which has close connections in spatial distribution and dynamic mechanism.Structural styles analysis of basin- range system, not only may rebuild basin- ra...Basin and orogenic belt belong to the same tectonic system which has close connections in spatial distribution and dynamic mechanism.Structural styles analysis of basin- range system, not only may rebuild basin- range coupling process and landscape evolution of orogenic belt and its adjacent basin, but also become the foundation in exploring how orogenesis controls landform,climate,resources,energy and environment etc.In the light of geodynamic mechanism,three main types of basin- range system may be classified,namely,stretch,compression and strike- slip.In combination with their geotectonic settings and plate movement phases, a comprehensive classification scheme may be educed for structural styles of basin- range system.Natural disasters and geo- ecological environment in the Yangtze Valley have been restricted and impressed by crustal movement and Qinling- Dabie etc.orogenesis since the Mesozoic and Cenozoic.In terms of collocating relation and contacting basin prototype and orogenic belt around the basin for cause of formation, typical structural styles of basin- range system on the central orogenic chain within the Yangtze Valley consist of coupling Tongbo- Dabie orogenic belt and Jianghan- Dongtin fault basin on the northern margin of the central Yangtze landmass, and coupling Qinling- Daba mountain margin thrust- faulted orogenic belt and Sichuan foreland basin on the northern margin of upper- Yangtze landmass.The paper analyzes evolutionary features of two typical structural styles of basin- range system during syn- orogenic, late- orogenic and post- orogenic stages,and probes into their dynamic mechanism.It is emphasized that,in different stages of basin- range system of different properties and basin- mountain transformation process,different structural styles may be formed;and different associations of structural styles can form different types of natural disasters complex and eco- environment systems.展开更多
The Golden Ratio Theorem, deeply rooted in fractal mathematics, presents a pioneering perspective on deciphering complex systems. It draws a profound connection between the principles of interchangeability, self-simil...The Golden Ratio Theorem, deeply rooted in fractal mathematics, presents a pioneering perspective on deciphering complex systems. It draws a profound connection between the principles of interchangeability, self-similarity, and the mathematical elegance of the Golden Ratio. This research unravels a unique methodological paradigm, emphasizing the omnipresence of the Golden Ratio in shaping system dynamics. The novelty of this study stems from its detailed exposition of self-similarity and interchangeability, transforming them from mere abstract notions into actionable, concrete insights. By highlighting the fractal nature of the Golden Ratio, the implications of these revelations become far-reaching, heralding new avenues for both theoretical advancements and pragmatic applications across a spectrum of scientific disciplines.展开更多
In this paper, adaptive variable structure neural control is presented for a class of uncertain multi-input multi-output (MIMO) nonlinear systems with state time-varying delays and unknown nonlinear dead-zones. The ...In this paper, adaptive variable structure neural control is presented for a class of uncertain multi-input multi-output (MIMO) nonlinear systems with state time-varying delays and unknown nonlinear dead-zones. The unknown time-varying delay uncer- tainties are compensated for using appropriate Lyapunov-Krasovskii functionals in the design. The approach removes the assumption of linear function outside the deadband without necessarily constructing a dead-zone inverse as an added contribution. By utilizing the integral-type Lyapunov function and introducing an adaptive compensation term for the upper bound of the residual and optimal approximation error as well as the dead-zone disturbance, the closed-loop control system is proved to be semi-globally uniformly ultimately bounded. In addition, a modified adaptive control algorithm is given in order to avoid the high-frequency chattering phenomenon. Simulation results demonstrate the effectiveness of the approach.展开更多
The precise control of the shape of transversely stiffened suspended cable systems is crucial. However, existing form-finding methods primarily rely on iterative calculations that treat loads as fixed known conditions...The precise control of the shape of transversely stiffened suspended cable systems is crucial. However, existing form-finding methods primarily rely on iterative calculations that treat loads as fixed known conditions. These methods are inefficient and fail to accurately control shape results. In this study, we propose a form-finding method that analyzes the load response of models under different sag and stress levels, taking into account the construction process. To analyze the system, a structural finite element model was established in ANSYS, and geometric nonlinear analysis was conducted using the Newton-Raphson method. The form-finding analysis results demonstrate that the proposed method achieves precise control of shape, with a maximum shape error ranging from 0.33% to 0.98%. Furthermore, the relationships between loads and tension forces are influenced by the deformed shape of the structures, exhibiting significant geometric nonlinear characteristics. Meanwhile, the load response analysis reveals that the stress level of the self-equilibrium state in the transversely stiffened suspended cable system is primarily governed by strength criteria, while shape is predominantly controlled by stiffness criteria. Importantly, by simulating the initial tensioning process as an initial condition, this method solves for a counterweight that satisfies the requirements and achieves a self-equilibrium state with the desired shape. The shape of the self-equilibrium state is precisely controlled by simulating the construction process. Overall, this work presents a new method for analyzing the form-finding process of large-span transversely stiffened suspended cable system, considering the construction process which was often overlooked in previous studies.展开更多
Spectral efficiency and energy efficiency are two important performance indicators of satellite systems. The Quasi-Constant Envelope Orthogonal Frequency Division Multiplexing(QCE-OFDM) technique can achieve both high...Spectral efficiency and energy efficiency are two important performance indicators of satellite systems. The Quasi-Constant Envelope Orthogonal Frequency Division Multiplexing(QCE-OFDM) technique can achieve both high spectral efficiency and low peak-to-average power ratio(PAPR). Therefore, the QCE-OFDM technique is considered as a promising candidate multi-carrier technique for satellite systems. However, the Doppler effect will cause the carrier frequency offset(CFO), and the non-ideal oscillator will cause the carrier phase offset(CPO) in satellite systems. The CFO and CPO will further result in the bit-error-rate(BER) performance degradation. Hence, it is important to estimate and compensate the CFO and CPO. This paper analyzes the effects of both CFO and CPO in QCE-OFDM satellite systems. Furthermore, we propose a joint CFO and CPO estimation method based on the pilot symbols in the frequency domain. In addition, the optimal pilot symbol structure with different pilot overheads is designed according to the minimum Cramer-Rao bound(CRB) criterion. Simulation results show that the estimation accuracy of the proposed method is close to the CRB.展开更多
In this paper, the isogeometric analysis (IGA) is employed to develop an acoustic radiation model for a double plate-acoustic cavity coupling system, with a focus on analyzing the sound transmission loss (STL). The fu...In this paper, the isogeometric analysis (IGA) is employed to develop an acoustic radiation model for a double plate-acoustic cavity coupling system, with a focus on analyzing the sound transmission loss (STL). The functionally graded (FG) plate exhibits a different material properties in-plane, and the power-law rule is adopted as the governing principle for material mixing. To validate the harmonic response and demonstrate the accuracy and convergence of the isogeometric modeling, ANASYS is utilized to compare with numerical examples. A plane wave serves as the acoustic excitation, and the Rayleigh integral is applied to discretize the radiated plate. The STL results are compared with the literature, confirming the reliability of the coupling system. Finally, the investigation is conducted to study impact of cavity depth and power-law parameter on the STL.展开更多
To scientifically evaluate the equipment system of systems(SoS)contribution rate,a contribution rate calculation method based on a structural equation model(SEM)is proposed in this paper.The connotation and evaluation...To scientifically evaluate the equipment system of systems(SoS)contribution rate,a contribution rate calculation method based on a structural equation model(SEM)is proposed in this paper.The connotation and evaluation process of the equipment SoS contribution rate were redefined and standardized.To solve the existing problems in the application of the original contribution rate formula,a modified contribution rate calculation formula is proposed.Finally,the contribution rate evaluation index was divided into latent and explicit variables.The measurement and structural equations in the SEM were used to calculate and analyze the latent variables.The simulation results show that the number of defense lines of air defense weapon equipment has a greater impact on the linear configuration than the group configuration.When the number of K-type air defense weapons is sufficient,the two-layer linear configuration should be adopted with 20 air defense weapon systems.When the number of K-type air defense weapons is insufficient,the single-layer group configuration should be adopted with 12 air defense weapon systems.展开更多
With the purpose to smooth the way of a correct understanding of information concepts and their evolution,in this paper,is discussed the evolution and development of the concept of information in biological systems,sh...With the purpose to smooth the way of a correct understanding of information concepts and their evolution,in this paper,is discussed the evolution and development of the concept of information in biological systems,showing that this concept was intuitively perceived even since ancient times by our predecessors,and described according to their language level of that times,but the crystallization of the real meaning of information is an achievement of our nowadays,by successive contribution of various scientific branches and personalities of the scientific community of the world,leading to a modern description/modeling of reality,in which information plays a fundamental role.It is shown that our reality can be understood as a contribution of matter/energy/information and represented/discussed as the model of the Universal Triangle of Reality(UTR),where various previous models can be suggestively inserted,as a function of their basic concern.The modern concepts on information starting from a theoretic experiment which would infringe the thermodynamics laws and reaching the theory of information and modern philosophic concepts on the world structuration allow us to show that information is a fundamental component of the material world and of the biological structures,in correlation with the structuration/destructuration processes of matter,involving absorption/release of information.Based on these concepts,is discussed the functionality of the biologic structures and is presented the informational model of the human body and living structures,as a general model of info-organization on the entire biological scale,showing that a rudimentary proto-consciousness should be operative even at the low-scale biological systems,because they work on the same principles,like the most developed bio-systems.The operability of biologic structures as informational devices is also pointed out.展开更多
The algebraic structures of the dynamical equations for the rotational relativistic systems are studied. It is found that the dynamical equations of holonomic conservative rotational relativistic systems and the speci...The algebraic structures of the dynamical equations for the rotational relativistic systems are studied. It is found that the dynamical equations of holonomic conservative rotational relativistic systems and the special nonholonomic rotational relativistic systems have Lie's algebraic structure, and the dynamical equations of the general holonomic rotational relativistic systems and the general nonholonomic rotational relativistic systems have Lie admitted algebraic structure. At last the Poisson integrals of the dynamical equations for the rotational relativistic systems are given.展开更多
This paper presents a brief description of the software toolbox, linear systems toolkit, developed in Matlab environment. The toolkit contains 66 m-functious, including structural decompositions of linear autonomous s...This paper presents a brief description of the software toolbox, linear systems toolkit, developed in Matlab environment. The toolkit contains 66 m-functious, including structural decompositions of linear autonomous systems, unforced/uuseused systems, proper systems, and singular systems, along with their applications to system factorizations, sensor/actuator selection, H-two and H-infinity control, and disturbance decoupling problems.展开更多
文摘The combination of structural health monitoring and vibration control is of great importance to provide components of smart structures.While synthetic algorithms have been proposed,adaptive control that is compatible with changing conditions still needs to be used,and time-varying systems are required to be simultaneously estimated with the application of adaptive control.In this research,the identification of structural time-varying dynamic characteristics and optimized simple adaptive control are integrated.First,reduced variations of physical parameters are estimated online using the multiple forgetting factor recursive least squares(MFRLS)method.Then,the energy from the structural vibration is simultaneously specified to optimize the control force with the identified parameters to be operational.Optimization is also performed based on the probability density function of the energy under the seismic excitation at any time.Finally,the optimal control force is obtained by the simple adaptive control(SAC)algorithm and energy coefficient.A numerical example and benchmark structure are employed to investigate the efficiency of the proposed approach.The simulation results revealed the effectiveness of the integrated online identification and optimal adaptive control in systems.
文摘Maintaining the integrity and longevity of structures is essential in many industries,such as aerospace,nuclear,and petroleum.To achieve the cost-effectiveness of large-scale systems in petroleum drilling,a strong emphasis on structural durability and monitoring is required.This study focuses on the mechanical vibrations that occur in rotary drilling systems,which have a substantial impact on the structural integrity of drilling equipment.The study specifically investigates axial,torsional,and lateral vibrations,which might lead to negative consequences such as bit-bounce,chaotic whirling,and high-frequency stick-slip.These events not only hinder the efficiency of drilling but also lead to exhaustion and harm to the system’s components since they are difficult to be detected and controlled in real time.The study investigates the dynamic interactions of these vibrations,specifically in their high-frequency modes,usingfield data obtained from measurement while drilling.Thefindings have demonstrated the effect of strong coupling between the high-frequency modes of these vibrations on drilling sys-tem performance.The obtained results highlight the importance of considering the interconnected impacts of these vibrations when designing and implementing robust control systems.Therefore,integrating these compo-nents can increase the durability of drill bits and drill strings,as well as improve the ability to monitor and detect damage.Moreover,by exploiting thesefindings,the assessment of structural resilience in rotary drilling systems can be enhanced.Furthermore,the study demonstrates the capacity of structural health monitoring to improve the quality,dependability,and efficiency of rotary drilling systems in the petroleum industry.
文摘The developed auxiliary software serves to simplify, standardize and facilitate the software loading of the structural organization of a complex technological system, as well as its further manipulation within the process of solving the considered technological system. Its help can be especially useful in the case of a complex structural organization of a technological system with a large number of different functional elements grouped into several technological subsystems. This paper presents the results of its application for a special complex technological system related to the reference steam block for the combined production of heat and electricity.
文摘We know that the total daily energy dissipation increases in complex organisms like the humans. It’s very probable that this increase in total energy dissipation is related to the progressive increase in mass. But we also know that day by day the dissipation of energy per unit mass decreases in these organisms. We intend to verify if this decrease is only an expression of the second law of thermodynamics, or if it is related to the increase in mass that occurs in these organisms. For this, we set ourselves the following objectives: verify the correlation between total energy dissipation and the evolution of body mass, and verify the correlation between the dissipation of energy per unit of mass and the evolution of body mass. As a result of the data analysis, we found a high degree of correlation between total energy dissipation and the evolution of body mass. And we also found a high correlation between the energy dissipated per unit of mass and the evolution of body mass. We can conclude that self-organization produces not only an increase in mass, but also a decline in energy dissipation per unit mass beyond what is expected by the second law of thermodynamics.
文摘The structural and tectonic evolution of the Bengal Basin is characterized by a complex interplay of factors, including sedimentation, the rise of the Himalayan Mountains, and the movements of Jurassic syn-rift faults. This study aims to comprehend the progression of growth faults inside the basin by examining fault geometry, basin development, and structural relief patterns. We used high-quality 2D seismic lines from the PK-MY-8403, classical seismic interpretation techniques and modeling were carried out to reveal the plate tectonic conditions, stratigraphy, and sedimentation history of the basin. The break-up unconformity, Paleocene and Eocene submerged conditions, and crucial geological formations including the Sylhet Limestone, Barail Group, and Surma Group were among the notable features recognized in seismic section. With an emphasis on growth strata and pre-growth strata, significant variations in layer thickness and relief were remarked in different stratigraphic levels. Basin development events like the evolution of the Miocene remnant ocean basin, sedimentation in Oligocene, Eocene Himalayan collision, and the Pliocene reverse fault development are analyzed. In the early the Pliocene compressional forces outpaced sedimentation rates and syn-depositional normal faults of Oligocene time began to move in opposite direction. Syn-depositional growth faults may have formed in the Bengal Basin as a result of this reversal. This research provides a detailed comprehensive knowledge of growth fault development in the Bengal Basin following the seismic interpretation, modelling, and thickness/relief analysis. The outcomes point to a substantial hydrocarbon potential, especially in regions like the Eocene Hinge Zone, where the prospectivity of the area is enhanced by carbonate reefs and Jalangi shale. However, the existence of petroleum four-way closure in the investigated region requires further investigation.
基金the National Natural Science Foundation of China(grant no.51474060)the National Key R&D Program of China(grant no.2017 YFC0805100)+1 种基金the National Natural Science Foundation of Liaoning Province(China)(grant no.2019-MS-129)the Fundamental Research Funds for the Central Universities of China(grant no.N162502002).
文摘The molten mixtures of alkali metal fluorides and aluminum fluoride are applied as aluminum electrolytes or brazing fluxes.However,the presence of Al2F-7^-in such molten systems is disputed.In the present study,MF-AlF3(M=K,Cs)systems with molar ratios<1 were studied by in-situ Raman spectroscopy and molecular simulation.The results show that,in addition to AlF6^(3-),AlF5^(2-),and AlF4^-,the systems also contained Al2F-7^-.The characteristic bands in the Raman spectra belonging to Al2F-7^-were located at about 225 cm^-1,315 cm^-1,479 cm^-1,and 720 cm^-1.There are two possible structures of Al2F-7^-,which belong to the D3d and D3hpoint groups.Both of these structures are linear,and their single-point energies were found to differ by only 0.31 kcal/mol.
文摘It is known that structural stiffness and strength distributions have an important role in the seismic response of buildings. The effect of using different code-specified lateral load patterns on the seismic performance of fixed-base buildings has been investigated by researchers during the past two decades. However, no investigation has yet been carried out for the case of soil-structure systems. In the present study, through intensive parametric analyses of 21,600 linear and nonlinear MDOF systems and considering five different shear strength and stiffness distribution patterns, including three code-specified patterns as well as uniform and concentric patterns subjected to a group of earthquakes recorded on alluvium and soft soils, the effect of structural characteristics distribution on the strength demand and ductility reduction factor of MDOF fixed-base and soil-structure systems are parametrically investigated. The results of this study show that depending on the level of inelasticity, soil flexibility and number of degrees-of-freedoms (DOFs), structural characteristics distribution can significantly affect the strength demand and ductility reduction factor of MDOF systems. It is also found that at high levels of inelasticity, the ductility reduction factor of low-rise MDOF soil-structure systems could be significantly less than that of fixed-base structures and the reduction is less pronounced as the number of stories increases.
文摘This paper aimed at studying the effect of different types of soil tillage systems on the change of total carbon (C) and nitrogen (N) in the soil structural units of different size after dry structural analysis of soil. The research was carried out in a 6-field rotation system (grain maize-wheat-sunflower-wheat-bean-wheat) at the end of the 2nd rotation. Six out of 24 soil tillage systems were selected; they were applied independently and in combination in the crop rotation. After that, they were compared to the system with constant deep plowing. So a total of seven soil tillage systems were investigated. The selected systems for main soil tillage were the following: plowing (control variant), disking, cutting, nil tillage (direct sowing), plowing-disking, plowing-nil tillage, disking-nil tillage. Three depths of 0-10, 10-20 and 20-30 cm were studied, as well as soil structural units were of the following sizes: 〉 10 mm, 10-5, 5-3, 3-1, 1-0.25 mm and 〈 0.25 mm. As a result of systematic implementation of different soil tillage systems, higher N and C concentrations were established by the layers according to constant plowing. Constant disking and its alternation with nil tillage increased the total N concentration with 15.6% and 11.1%, respectively, in comparison with the constant plowing. The same was valid for C concentration in soil, but the highest increase was established in the variants with constant cutting and nil tillage. The exceeding was with 14.0% and 13.2%, in comparison to constant plowing. The redistribution of N and C depending on the structural soil units was most expressed in the 0-10 cm and 10-20 cm layers. The highest amounts of C and N were found in the soil units with size less than 5 mm, mainly in the 〈 0.25 mm fraction. At depth of 20-30 cm, the role of the size of soil structural units for C and N redistribution decreased strongly. The values of C/N ratio were moderate only under the use of constant disking. This index was low under all other soil tillage systems. The correlation of total N with C in soil was high, positive and significant depending on the size of structural soil units and the tillage systems, as average for the investigated factors in this experiment. The minimal tillage and the tillage without turning of soil, used independently and in combination, had the highest contribution to preserving the organic matter in the haplic Chernozems of Dobrudzha region.
基金supported by the National Natural Science Foundation of China (11072049,10772038)the Key Project of Chinese National Programs for Fundamental Research and Development (2010CB832703)+1 种基金the National Key Technology Support Program (2009BAG12A04)the Program for New Century Excellent Talents in University
文摘This paper analyzes the random response of structural-acoustic coupled systems. Most existing works on coupled structural-acoustic analysis are limited to systems under deterministic excitations due to high computational cost required by a random response analysis. To reduce the computational burden involved in the coupled random analysis, an iterative procedure based on the Pseudo excitation method has been developed. It is found that this algorithm has an overwhelming advantage in computing efficiency over traditional methods, as demonstrated by some numerical examples given in this paper.
文摘The loss factors and their effects on the magnitude and frequency of resonance peaks in various mechanical sys-tems are reviewed for acoustic,vibration,and vibration fatigue applications.The main trends and relationships were obtained for linear mechanical models with hysteresis damping.The well-known features(complex module of elasticity,total loss factor,etc.)are clarified for practical engineers and students,and new results are presented(in particular,for 2-DOF in-series models with hysteresis friction).The results are of both educational and prac-tical interest and may be applied for NVH analysis and testing,mechanical and aeromechanical design,and noise and vibration control in buildings.
基金This paper is one of achievements of the Chinese Academy of Sciences " Knowledge Innovation Project" item(KZCX2- 113).
文摘Basin and orogenic belt belong to the same tectonic system which has close connections in spatial distribution and dynamic mechanism.Structural styles analysis of basin- range system, not only may rebuild basin- range coupling process and landscape evolution of orogenic belt and its adjacent basin, but also become the foundation in exploring how orogenesis controls landform,climate,resources,energy and environment etc.In the light of geodynamic mechanism,three main types of basin- range system may be classified,namely,stretch,compression and strike- slip.In combination with their geotectonic settings and plate movement phases, a comprehensive classification scheme may be educed for structural styles of basin- range system.Natural disasters and geo- ecological environment in the Yangtze Valley have been restricted and impressed by crustal movement and Qinling- Dabie etc.orogenesis since the Mesozoic and Cenozoic.In terms of collocating relation and contacting basin prototype and orogenic belt around the basin for cause of formation, typical structural styles of basin- range system on the central orogenic chain within the Yangtze Valley consist of coupling Tongbo- Dabie orogenic belt and Jianghan- Dongtin fault basin on the northern margin of the central Yangtze landmass, and coupling Qinling- Daba mountain margin thrust- faulted orogenic belt and Sichuan foreland basin on the northern margin of upper- Yangtze landmass.The paper analyzes evolutionary features of two typical structural styles of basin- range system during syn- orogenic, late- orogenic and post- orogenic stages,and probes into their dynamic mechanism.It is emphasized that,in different stages of basin- range system of different properties and basin- mountain transformation process,different structural styles may be formed;and different associations of structural styles can form different types of natural disasters complex and eco- environment systems.
文摘The Golden Ratio Theorem, deeply rooted in fractal mathematics, presents a pioneering perspective on deciphering complex systems. It draws a profound connection between the principles of interchangeability, self-similarity, and the mathematical elegance of the Golden Ratio. This research unravels a unique methodological paradigm, emphasizing the omnipresence of the Golden Ratio in shaping system dynamics. The novelty of this study stems from its detailed exposition of self-similarity and interchangeability, transforming them from mere abstract notions into actionable, concrete insights. By highlighting the fractal nature of the Golden Ratio, the implications of these revelations become far-reaching, heralding new avenues for both theoretical advancements and pragmatic applications across a spectrum of scientific disciplines.
基金supported by National Natural Science Foundationof China (No. 60774017 and No. 60874045)
文摘In this paper, adaptive variable structure neural control is presented for a class of uncertain multi-input multi-output (MIMO) nonlinear systems with state time-varying delays and unknown nonlinear dead-zones. The unknown time-varying delay uncer- tainties are compensated for using appropriate Lyapunov-Krasovskii functionals in the design. The approach removes the assumption of linear function outside the deadband without necessarily constructing a dead-zone inverse as an added contribution. By utilizing the integral-type Lyapunov function and introducing an adaptive compensation term for the upper bound of the residual and optimal approximation error as well as the dead-zone disturbance, the closed-loop control system is proved to be semi-globally uniformly ultimately bounded. In addition, a modified adaptive control algorithm is given in order to avoid the high-frequency chattering phenomenon. Simulation results demonstrate the effectiveness of the approach.
文摘The precise control of the shape of transversely stiffened suspended cable systems is crucial. However, existing form-finding methods primarily rely on iterative calculations that treat loads as fixed known conditions. These methods are inefficient and fail to accurately control shape results. In this study, we propose a form-finding method that analyzes the load response of models under different sag and stress levels, taking into account the construction process. To analyze the system, a structural finite element model was established in ANSYS, and geometric nonlinear analysis was conducted using the Newton-Raphson method. The form-finding analysis results demonstrate that the proposed method achieves precise control of shape, with a maximum shape error ranging from 0.33% to 0.98%. Furthermore, the relationships between loads and tension forces are influenced by the deformed shape of the structures, exhibiting significant geometric nonlinear characteristics. Meanwhile, the load response analysis reveals that the stress level of the self-equilibrium state in the transversely stiffened suspended cable system is primarily governed by strength criteria, while shape is predominantly controlled by stiffness criteria. Importantly, by simulating the initial tensioning process as an initial condition, this method solves for a counterweight that satisfies the requirements and achieves a self-equilibrium state with the desired shape. The shape of the self-equilibrium state is precisely controlled by simulating the construction process. Overall, this work presents a new method for analyzing the form-finding process of large-span transversely stiffened suspended cable system, considering the construction process which was often overlooked in previous studies.
基金supported by the National Natural Science Foundation of China(No.91438114,No.61372111 and No.61601045)
文摘Spectral efficiency and energy efficiency are two important performance indicators of satellite systems. The Quasi-Constant Envelope Orthogonal Frequency Division Multiplexing(QCE-OFDM) technique can achieve both high spectral efficiency and low peak-to-average power ratio(PAPR). Therefore, the QCE-OFDM technique is considered as a promising candidate multi-carrier technique for satellite systems. However, the Doppler effect will cause the carrier frequency offset(CFO), and the non-ideal oscillator will cause the carrier phase offset(CPO) in satellite systems. The CFO and CPO will further result in the bit-error-rate(BER) performance degradation. Hence, it is important to estimate and compensate the CFO and CPO. This paper analyzes the effects of both CFO and CPO in QCE-OFDM satellite systems. Furthermore, we propose a joint CFO and CPO estimation method based on the pilot symbols in the frequency domain. In addition, the optimal pilot symbol structure with different pilot overheads is designed according to the minimum Cramer-Rao bound(CRB) criterion. Simulation results show that the estimation accuracy of the proposed method is close to the CRB.
文摘In this paper, the isogeometric analysis (IGA) is employed to develop an acoustic radiation model for a double plate-acoustic cavity coupling system, with a focus on analyzing the sound transmission loss (STL). The functionally graded (FG) plate exhibits a different material properties in-plane, and the power-law rule is adopted as the governing principle for material mixing. To validate the harmonic response and demonstrate the accuracy and convergence of the isogeometric modeling, ANASYS is utilized to compare with numerical examples. A plane wave serves as the acoustic excitation, and the Rayleigh integral is applied to discretize the radiated plate. The STL results are compared with the literature, confirming the reliability of the coupling system. Finally, the investigation is conducted to study impact of cavity depth and power-law parameter on the STL.
基金The National Social Science Foundation Military Science Project(No.16GJ003-068).
文摘To scientifically evaluate the equipment system of systems(SoS)contribution rate,a contribution rate calculation method based on a structural equation model(SEM)is proposed in this paper.The connotation and evaluation process of the equipment SoS contribution rate were redefined and standardized.To solve the existing problems in the application of the original contribution rate formula,a modified contribution rate calculation formula is proposed.Finally,the contribution rate evaluation index was divided into latent and explicit variables.The measurement and structural equations in the SEM were used to calculate and analyze the latent variables.The simulation results show that the number of defense lines of air defense weapon equipment has a greater impact on the linear configuration than the group configuration.When the number of K-type air defense weapons is sufficient,the two-layer linear configuration should be adopted with 20 air defense weapon systems.When the number of K-type air defense weapons is insufficient,the single-layer group configuration should be adopted with 12 air defense weapon systems.
文摘With the purpose to smooth the way of a correct understanding of information concepts and their evolution,in this paper,is discussed the evolution and development of the concept of information in biological systems,showing that this concept was intuitively perceived even since ancient times by our predecessors,and described according to their language level of that times,but the crystallization of the real meaning of information is an achievement of our nowadays,by successive contribution of various scientific branches and personalities of the scientific community of the world,leading to a modern description/modeling of reality,in which information plays a fundamental role.It is shown that our reality can be understood as a contribution of matter/energy/information and represented/discussed as the model of the Universal Triangle of Reality(UTR),where various previous models can be suggestively inserted,as a function of their basic concern.The modern concepts on information starting from a theoretic experiment which would infringe the thermodynamics laws and reaching the theory of information and modern philosophic concepts on the world structuration allow us to show that information is a fundamental component of the material world and of the biological structures,in correlation with the structuration/destructuration processes of matter,involving absorption/release of information.Based on these concepts,is discussed the functionality of the biologic structures and is presented the informational model of the human body and living structures,as a general model of info-organization on the entire biological scale,showing that a rudimentary proto-consciousness should be operative even at the low-scale biological systems,because they work on the same principles,like the most developed bio-systems.The operability of biologic structures as informational devices is also pointed out.
文摘The algebraic structures of the dynamical equations for the rotational relativistic systems are studied. It is found that the dynamical equations of holonomic conservative rotational relativistic systems and the special nonholonomic rotational relativistic systems have Lie's algebraic structure, and the dynamical equations of the general holonomic rotational relativistic systems and the general nonholonomic rotational relativistic systems have Lie admitted algebraic structure. At last the Poisson integrals of the dynamical equations for the rotational relativistic systems are given.
文摘This paper presents a brief description of the software toolbox, linear systems toolkit, developed in Matlab environment. The toolkit contains 66 m-functious, including structural decompositions of linear autonomous systems, unforced/uuseused systems, proper systems, and singular systems, along with their applications to system factorizations, sensor/actuator selection, H-two and H-infinity control, and disturbance decoupling problems.