The current exact Rayleigh scattering calculation of ocean color remote sensing uses the look-up table (LUT), which is usually created for a special remote sensor and cannot be applied to other sensors. For practica...The current exact Rayleigh scattering calculation of ocean color remote sensing uses the look-up table (LUT), which is usually created for a special remote sensor and cannot be applied to other sensors. For practical application, a general purpose Rayleigh scattering LUT which can be applied to all ocean color remote sensors is generated. An adding-doubling method to solve the vector radiative transfer equation in the plane-parallel atmosphere is deduced in detail. Compared with the exact Rayleigh scattering radiance derived from the MODIS exact Rayleigh scattering LUT, it is proved that the relative error of Rayleigh scattering calculation with the adding-doubling method is less than 0.25%, which meets the required accuracy of the atmospheric correction of ocean color remote sensing. Therefore, the adding-doubling method can be used to generate the exact Rayleigh scattering LUT for the ocean color remote sensors. Finally, the general purpose exact Rayleigh scattering LUT is generated using the adding-doubling method. On the basis of the general purpose LUT, the calculated Rayleigh scattering radiance is tested by comparing with the LUTs ofMODIS, SeaWiFS and the other ocean color sensors, showing that the relative errors are all less than 0.5%, and this general purpose LUT can be applied to all ocean color remote sensors.展开更多
Global look-up table strategy proposed recently has been proven to be an efficient method to accelerate the interpolation, which is the most time-consuming part in the iterative sub-pixel digital image correlation (...Global look-up table strategy proposed recently has been proven to be an efficient method to accelerate the interpolation, which is the most time-consuming part in the iterative sub-pixel digital image correlation (DIC) algorithms. In this paper, a global look-up table strategy with cubic B-spline interpolation is developed for the DIC method based on the inverse compositional Gauss-Newton (IC-GN) algorithm. The performance of this strategy, including accuracy, precision, and computation efficiency, is evaluated through a theoretical and experimental study, using the one with widely employed bicubic interpolation as a benchmark. The global look-up table strategy with cubic B-spline interpolation improves significantly the accuracy of the IC-GN algorithm-based DIC method compared with the one using the bicubic interpolation, at a trivial price of computation efficiency.展开更多
In order to precisely retrieve the atmospheric CO2 , a retrieval method based on both near infrared (NIR) and thermal infrared (TIR) is established firstly. Then a look-up-table (LUT) based fast line-by-line rad...In order to precisely retrieve the atmospheric CO2 , a retrieval method based on both near infrared (NIR) and thermal infrared (TIR) is established firstly. Then a look-up-table (LUT) based fast line-by-line radiative transfer model (RTM) was integrated into the retrieval procedure to accelerate radiative transfer calculations. The LUT stores gas absorption cross-sections as a function of temperature, pressure and wavenumber. It could greatly reduce calculating time in radiative transfer compared to direct line-by-line method. Then retrieval was simulated using NIR, TIR and both bands. The retrieved CO2 profiles suggest joint approach could reconstruct CO2 profile better than those using NIR or TIR alone. Joint retrieval using both bands simultaneously could provide better constrain to CO2 vertical distribution in the whole troposphere.展开更多
The widespread application of new technologies,while empowering women with new opportunities,might also put them at disadvantage.For example,in comparison with males,the application of AI might be more likely to cost ...The widespread application of new technologies,while empowering women with new opportunities,might also put them at disadvantage.For example,in comparison with males,the application of AI might be more likely to cost them their jobs.Meanwhile,women are missing out the opportunity to participate in the policy-making process–they are absent from the table.If no change is made in the current policies,we will miss the goal to achieve gender equality,the fifth of the 17 Sustainable Development Goals set for UN’s 2030 Agenda for Sustainable Development,warned elite women scientists with the Organization for Women in Science for the Developing World(OWSD).What shall be done now?How can we make a difference?They are in action to help.展开更多
DSP operation in a Biomedical related therapeutic hardware need to beperformed with high accuracy and with high speed. Portable DSP hardware’s likepulse/heart beat detectors must perform with reduced operational powe...DSP operation in a Biomedical related therapeutic hardware need to beperformed with high accuracy and with high speed. Portable DSP hardware’s likepulse/heart beat detectors must perform with reduced operational power due to lack ofconventional power sources. This work proposes a hybrid biomedical hardware chip inwhich the speed and power utilization factors are greatly improved. Multipliers are thecore operational unit of any DSP SoC. This work proposes a LUT based unsignedmultiplication which is proven to be efficient in terms of high operating speed. For n bitinput multiplication n*n memory array of 2 n bit size is required to memorize all thepossible input and output combination. Various literature works claims to be achieve highspeed multiplication with reduced LUT size by integrating a barrel shifter mechanism.This paper work address this problem, by reworking the multiplier architecture with aparallel operating pre-processing unit which used to change the multiplier and multiplicandorder with respect to the number of computational addition and subtraction stages required.Along with LUT multiplier a low power bus encoding scheme is integrated to limit the powerconstraint of the on chip DSP unit. This paper address both the speed and power optimizationtechniques and tested with various FPGA device families.展开更多
为了探讨Landsat 8 OIL数据在LAI大范围反演方面的应用潜力,使用Landsat 8 OIL影像,通过PROSAIL辐射传输模型,采用3种波段组合(Band2-7,Band2-5,Band3-5)建立了3个模拟冠层反射率-叶面积指数(LAI)查找表,用2种代价函数(Geman and Mc Cl...为了探讨Landsat 8 OIL数据在LAI大范围反演方面的应用潜力,使用Landsat 8 OIL影像,通过PROSAIL辐射传输模型,采用3种波段组合(Band2-7,Band2-5,Band3-5)建立了3个模拟冠层反射率-叶面积指数(LAI)查找表,用2种代价函数(Geman and Mc Clure代价函数,均方根误差代价函数)实现了对玉米、土豆、森林LAI的定量反演,并用LAI-2200测量数据作为相对真值对反演精度进行评价。结果表明:(1)使用Landsat 8数据,通过PROSAIL模型反演叶面积指数的精度是可以接受的,RMSE范围为在[0.892 4,1.205 0],R2范围为[0.721 3,0.873 3]。(2)Band5(近红外),Band4(红)Band3(绿)的波段组合反演效果在3种组合中精度最高,平均RMSE=0.993 1,R2=0.787 3。(3)Geman and Mc Clure代价函数比常用的均方根误差代价函数得到了更高的反演精度,平均RMSE=0.940 5,R2=0.817 5。(4)相对最优的反演策略是Band5,Band4,Band3的波段组合结合GM代价函数,RMSE=0.892 4,R2=0.873 3。(5)存在玉米土豆的反演值普遍低于测量值,而森林的反演值普遍高于测量值的问题。展开更多
面向农作物产量监测对中高分辨率遥感数据光合有效辐射(photosynthetically available radiation,PAR)反演的实际需求,该文选择山东省禹城市2014年1月至2014年12月共13景GF-1/WFV卫星影像作为数据源,基于中分辨率成像光谱仪(moderate-re...面向农作物产量监测对中高分辨率遥感数据光合有效辐射(photosynthetically available radiation,PAR)反演的实际需求,该文选择山东省禹城市2014年1月至2014年12月共13景GF-1/WFV卫星影像作为数据源,基于中分辨率成像光谱仪(moderate-resolution imaging spectroradiometer,MODIS)地表反射率产品作为辅助数据源,开发了适于业务运行的WFV数据气溶胶光学厚度(aerosol optical depth,AOD)及PAR的反演算法。算法核心是采用6S(second simulation of satellite signal in the solar spectrum)大气辐射传输模型,建立包括AOD在内的大气参数与查找表(look-up table,LUT),结合大气顶层太阳入射辐照度及卫星入瞳处辐射亮度值反演地表反射率数据,通过与WFV蓝光波段地表反射率数据对比获取大气参数。通过反演的大气参数计算400~700 nm连续光谱区间的PAR值,并建立WFV数据离散红、绿、蓝光波段与连续光谱区间PAR的转换系数,实现WFV数据PAR的反演。其中,WFV蓝光波段反射率数据与MODIS地表反射率数据关系、离散到连续谱段PAR的关系可以从美国地质勘探局(United States Geological Survey,USGS)提供的典型地物波谱库数据理论计算获取。利用中国生态系统研究网络(chinese ecosystem research network,CERN)禹城站地面观测值进行验证结果表明,该文提出的算法总体精度达到92.63%,平均绝对误差为14.56 W/m^2,平均相对误差7.37%,具有业务应用的潜力。展开更多
基金supported by the National Natural Science Foundation of China under contract No.40506036the High Tech Research and Development"863"Program of China under contract No.2003AA131160-04the Science and Technology Plan of Zhejiang Province of China under contract Nos 2004E60054 and 2004C13027.
文摘The current exact Rayleigh scattering calculation of ocean color remote sensing uses the look-up table (LUT), which is usually created for a special remote sensor and cannot be applied to other sensors. For practical application, a general purpose Rayleigh scattering LUT which can be applied to all ocean color remote sensors is generated. An adding-doubling method to solve the vector radiative transfer equation in the plane-parallel atmosphere is deduced in detail. Compared with the exact Rayleigh scattering radiance derived from the MODIS exact Rayleigh scattering LUT, it is proved that the relative error of Rayleigh scattering calculation with the adding-doubling method is less than 0.25%, which meets the required accuracy of the atmospheric correction of ocean color remote sensing. Therefore, the adding-doubling method can be used to generate the exact Rayleigh scattering LUT for the ocean color remote sensors. Finally, the general purpose exact Rayleigh scattering LUT is generated using the adding-doubling method. On the basis of the general purpose LUT, the calculated Rayleigh scattering radiance is tested by comparing with the LUTs ofMODIS, SeaWiFS and the other ocean color sensors, showing that the relative errors are all less than 0.5%, and this general purpose LUT can be applied to all ocean color remote sensors.
基金financially supported by the National Natural Science Foundation of China(11202081,11272124,and 11472109)the State Key Lab of Subtropical Building Science,South China University of Technology(2014ZC17)
文摘Global look-up table strategy proposed recently has been proven to be an efficient method to accelerate the interpolation, which is the most time-consuming part in the iterative sub-pixel digital image correlation (DIC) algorithms. In this paper, a global look-up table strategy with cubic B-spline interpolation is developed for the DIC method based on the inverse compositional Gauss-Newton (IC-GN) algorithm. The performance of this strategy, including accuracy, precision, and computation efficiency, is evaluated through a theoretical and experimental study, using the one with widely employed bicubic interpolation as a benchmark. The global look-up table strategy with cubic B-spline interpolation improves significantly the accuracy of the IC-GN algorithm-based DIC method compared with the one using the bicubic interpolation, at a trivial price of computation efficiency.
基金Supported by the National Natural Science Foundation of China(41175037)
文摘In order to precisely retrieve the atmospheric CO2 , a retrieval method based on both near infrared (NIR) and thermal infrared (TIR) is established firstly. Then a look-up-table (LUT) based fast line-by-line radiative transfer model (RTM) was integrated into the retrieval procedure to accelerate radiative transfer calculations. The LUT stores gas absorption cross-sections as a function of temperature, pressure and wavenumber. It could greatly reduce calculating time in radiative transfer compared to direct line-by-line method. Then retrieval was simulated using NIR, TIR and both bands. The retrieved CO2 profiles suggest joint approach could reconstruct CO2 profile better than those using NIR or TIR alone. Joint retrieval using both bands simultaneously could provide better constrain to CO2 vertical distribution in the whole troposphere.
文摘The widespread application of new technologies,while empowering women with new opportunities,might also put them at disadvantage.For example,in comparison with males,the application of AI might be more likely to cost them their jobs.Meanwhile,women are missing out the opportunity to participate in the policy-making process–they are absent from the table.If no change is made in the current policies,we will miss the goal to achieve gender equality,the fifth of the 17 Sustainable Development Goals set for UN’s 2030 Agenda for Sustainable Development,warned elite women scientists with the Organization for Women in Science for the Developing World(OWSD).What shall be done now?How can we make a difference?They are in action to help.
文摘DSP operation in a Biomedical related therapeutic hardware need to beperformed with high accuracy and with high speed. Portable DSP hardware’s likepulse/heart beat detectors must perform with reduced operational power due to lack ofconventional power sources. This work proposes a hybrid biomedical hardware chip inwhich the speed and power utilization factors are greatly improved. Multipliers are thecore operational unit of any DSP SoC. This work proposes a LUT based unsignedmultiplication which is proven to be efficient in terms of high operating speed. For n bitinput multiplication n*n memory array of 2 n bit size is required to memorize all thepossible input and output combination. Various literature works claims to be achieve highspeed multiplication with reduced LUT size by integrating a barrel shifter mechanism.This paper work address this problem, by reworking the multiplier architecture with aparallel operating pre-processing unit which used to change the multiplier and multiplicandorder with respect to the number of computational addition and subtraction stages required.Along with LUT multiplier a low power bus encoding scheme is integrated to limit the powerconstraint of the on chip DSP unit. This paper address both the speed and power optimizationtechniques and tested with various FPGA device families.
文摘面向农作物产量监测对中高分辨率遥感数据光合有效辐射(photosynthetically available radiation,PAR)反演的实际需求,该文选择山东省禹城市2014年1月至2014年12月共13景GF-1/WFV卫星影像作为数据源,基于中分辨率成像光谱仪(moderate-resolution imaging spectroradiometer,MODIS)地表反射率产品作为辅助数据源,开发了适于业务运行的WFV数据气溶胶光学厚度(aerosol optical depth,AOD)及PAR的反演算法。算法核心是采用6S(second simulation of satellite signal in the solar spectrum)大气辐射传输模型,建立包括AOD在内的大气参数与查找表(look-up table,LUT),结合大气顶层太阳入射辐照度及卫星入瞳处辐射亮度值反演地表反射率数据,通过与WFV蓝光波段地表反射率数据对比获取大气参数。通过反演的大气参数计算400~700 nm连续光谱区间的PAR值,并建立WFV数据离散红、绿、蓝光波段与连续光谱区间PAR的转换系数,实现WFV数据PAR的反演。其中,WFV蓝光波段反射率数据与MODIS地表反射率数据关系、离散到连续谱段PAR的关系可以从美国地质勘探局(United States Geological Survey,USGS)提供的典型地物波谱库数据理论计算获取。利用中国生态系统研究网络(chinese ecosystem research network,CERN)禹城站地面观测值进行验证结果表明,该文提出的算法总体精度达到92.63%,平均绝对误差为14.56 W/m^2,平均相对误差7.37%,具有业务应用的潜力。